7 research outputs found
Machine-Learning-Driven Discovery of Mn<sup>4+</sup>-Doped Red-Emitting Fluorides with Short Excited-State Lifetime and High Efficiency for Mini Light-Emitting Diode Displays
The discovery of high-efficiency Mn4+-activated
fluoride
red phosphors with short excited-state lifetimes (ESLs) is urgent
and crucial for high-quality, wide-color-gamut display applications.
However, it is still a great challenge to design target phosphors
with both short ESL and high luminescence efficiency. Herein, we propose
an efficient machine learning approach based on a small dataset to
establish the ESL prediction model, thereby facilitating the discovery
of new Mn4+-activated fluorides with short ESLs. Such a
model can not only accurately predict the ESLs of Mn4+ in
fluorides but also quantify the impact of structure features on ESLs,
therefore elucidating the “structure-lifetime” correlations.
Guided by the correlations, two new Mn4+-doped tetramethylammonium
(TMA)-based hybrid fluorides (TMA)2BF6:Mn4+ (B = Sn or Hf) with both short ESLs (τ ≤ 3.7
ms) and high quantum efficiencies (internal QEs > 92%, external
QEs
> 55%) have been discovered successfully. A prototype displayer
with
excellent performance (∼124% National Television Standards
Committee (NTSC) color gamut) is assembled by employing a (TMA)2SnF6:Mn4+-based white Mini-LED backlight
module, demonstrating its practical prospects in high-quality displays.
This work not only brings promising candidates for Mn4+-doped fluoride phosphors but also provides a valuable reference
for accelerating the discovery of new promising phosphors
Machine-Learning-Driven Discovery of Mn<sup>4+</sup>-Doped Red-Emitting Fluorides with Short Excited-State Lifetime and High Efficiency for Mini Light-Emitting Diode Displays
The discovery of high-efficiency Mn4+-activated
fluoride
red phosphors with short excited-state lifetimes (ESLs) is urgent
and crucial for high-quality, wide-color-gamut display applications.
However, it is still a great challenge to design target phosphors
with both short ESL and high luminescence efficiency. Herein, we propose
an efficient machine learning approach based on a small dataset to
establish the ESL prediction model, thereby facilitating the discovery
of new Mn4+-activated fluorides with short ESLs. Such a
model can not only accurately predict the ESLs of Mn4+ in
fluorides but also quantify the impact of structure features on ESLs,
therefore elucidating the “structure-lifetime” correlations.
Guided by the correlations, two new Mn4+-doped tetramethylammonium
(TMA)-based hybrid fluorides (TMA)2BF6:Mn4+ (B = Sn or Hf) with both short ESLs (τ ≤ 3.7
ms) and high quantum efficiencies (internal QEs > 92%, external
QEs
> 55%) have been discovered successfully. A prototype displayer
with
excellent performance (∼124% National Television Standards
Committee (NTSC) color gamut) is assembled by employing a (TMA)2SnF6:Mn4+-based white Mini-LED backlight
module, demonstrating its practical prospects in high-quality displays.
This work not only brings promising candidates for Mn4+-doped fluoride phosphors but also provides a valuable reference
for accelerating the discovery of new promising phosphors
Machine-Learning-Driven Discovery of Mn<sup>4+</sup>-Doped Red-Emitting Fluorides with Short Excited-State Lifetime and High Efficiency for Mini Light-Emitting Diode Displays
The discovery of high-efficiency Mn4+-activated
fluoride
red phosphors with short excited-state lifetimes (ESLs) is urgent
and crucial for high-quality, wide-color-gamut display applications.
However, it is still a great challenge to design target phosphors
with both short ESL and high luminescence efficiency. Herein, we propose
an efficient machine learning approach based on a small dataset to
establish the ESL prediction model, thereby facilitating the discovery
of new Mn4+-activated fluorides with short ESLs. Such a
model can not only accurately predict the ESLs of Mn4+ in
fluorides but also quantify the impact of structure features on ESLs,
therefore elucidating the “structure-lifetime” correlations.
Guided by the correlations, two new Mn4+-doped tetramethylammonium
(TMA)-based hybrid fluorides (TMA)2BF6:Mn4+ (B = Sn or Hf) with both short ESLs (τ ≤ 3.7
ms) and high quantum efficiencies (internal QEs > 92%, external
QEs
> 55%) have been discovered successfully. A prototype displayer
with
excellent performance (∼124% National Television Standards
Committee (NTSC) color gamut) is assembled by employing a (TMA)2SnF6:Mn4+-based white Mini-LED backlight
module, demonstrating its practical prospects in high-quality displays.
This work not only brings promising candidates for Mn4+-doped fluoride phosphors but also provides a valuable reference
for accelerating the discovery of new promising phosphors
Machine-Learning-Driven Discovery of Mn<sup>4+</sup>-Doped Red-Emitting Fluorides with Short Excited-State Lifetime and High Efficiency for Mini Light-Emitting Diode Displays
The discovery of high-efficiency Mn4+-activated
fluoride
red phosphors with short excited-state lifetimes (ESLs) is urgent
and crucial for high-quality, wide-color-gamut display applications.
However, it is still a great challenge to design target phosphors
with both short ESL and high luminescence efficiency. Herein, we propose
an efficient machine learning approach based on a small dataset to
establish the ESL prediction model, thereby facilitating the discovery
of new Mn4+-activated fluorides with short ESLs. Such a
model can not only accurately predict the ESLs of Mn4+ in
fluorides but also quantify the impact of structure features on ESLs,
therefore elucidating the “structure-lifetime” correlations.
Guided by the correlations, two new Mn4+-doped tetramethylammonium
(TMA)-based hybrid fluorides (TMA)2BF6:Mn4+ (B = Sn or Hf) with both short ESLs (τ ≤ 3.7
ms) and high quantum efficiencies (internal QEs > 92%, external
QEs
> 55%) have been discovered successfully. A prototype displayer
with
excellent performance (∼124% National Television Standards
Committee (NTSC) color gamut) is assembled by employing a (TMA)2SnF6:Mn4+-based white Mini-LED backlight
module, demonstrating its practical prospects in high-quality displays.
This work not only brings promising candidates for Mn4+-doped fluoride phosphors but also provides a valuable reference
for accelerating the discovery of new promising phosphors
Machine-Learning-Driven Discovery of Mn<sup>4+</sup>-Doped Red-Emitting Fluorides with Short Excited-State Lifetime and High Efficiency for Mini Light-Emitting Diode Displays
The discovery of high-efficiency Mn4+-activated
fluoride
red phosphors with short excited-state lifetimes (ESLs) is urgent
and crucial for high-quality, wide-color-gamut display applications.
However, it is still a great challenge to design target phosphors
with both short ESL and high luminescence efficiency. Herein, we propose
an efficient machine learning approach based on a small dataset to
establish the ESL prediction model, thereby facilitating the discovery
of new Mn4+-activated fluorides with short ESLs. Such a
model can not only accurately predict the ESLs of Mn4+ in
fluorides but also quantify the impact of structure features on ESLs,
therefore elucidating the “structure-lifetime” correlations.
Guided by the correlations, two new Mn4+-doped tetramethylammonium
(TMA)-based hybrid fluorides (TMA)2BF6:Mn4+ (B = Sn or Hf) with both short ESLs (τ ≤ 3.7
ms) and high quantum efficiencies (internal QEs > 92%, external
QEs
> 55%) have been discovered successfully. A prototype displayer
with
excellent performance (∼124% National Television Standards
Committee (NTSC) color gamut) is assembled by employing a (TMA)2SnF6:Mn4+-based white Mini-LED backlight
module, demonstrating its practical prospects in high-quality displays.
This work not only brings promising candidates for Mn4+-doped fluoride phosphors but also provides a valuable reference
for accelerating the discovery of new promising phosphors
Machine-Learning-Driven Discovery of Mn<sup>4+</sup>-Doped Red-Emitting Fluorides with Short Excited-State Lifetime and High Efficiency for Mini Light-Emitting Diode Displays
The discovery of high-efficiency Mn4+-activated
fluoride
red phosphors with short excited-state lifetimes (ESLs) is urgent
and crucial for high-quality, wide-color-gamut display applications.
However, it is still a great challenge to design target phosphors
with both short ESL and high luminescence efficiency. Herein, we propose
an efficient machine learning approach based on a small dataset to
establish the ESL prediction model, thereby facilitating the discovery
of new Mn4+-activated fluorides with short ESLs. Such a
model can not only accurately predict the ESLs of Mn4+ in
fluorides but also quantify the impact of structure features on ESLs,
therefore elucidating the “structure-lifetime” correlations.
Guided by the correlations, two new Mn4+-doped tetramethylammonium
(TMA)-based hybrid fluorides (TMA)2BF6:Mn4+ (B = Sn or Hf) with both short ESLs (τ ≤ 3.7
ms) and high quantum efficiencies (internal QEs > 92%, external
QEs
> 55%) have been discovered successfully. A prototype displayer
with
excellent performance (∼124% National Television Standards
Committee (NTSC) color gamut) is assembled by employing a (TMA)2SnF6:Mn4+-based white Mini-LED backlight
module, demonstrating its practical prospects in high-quality displays.
This work not only brings promising candidates for Mn4+-doped fluoride phosphors but also provides a valuable reference
for accelerating the discovery of new promising phosphors
Machine-Learning-Driven Discovery of Mn<sup>4+</sup>-Doped Red-Emitting Fluorides with Short Excited-State Lifetime and High Efficiency for Mini Light-Emitting Diode Displays
The discovery of high-efficiency Mn4+-activated
fluoride
red phosphors with short excited-state lifetimes (ESLs) is urgent
and crucial for high-quality, wide-color-gamut display applications.
However, it is still a great challenge to design target phosphors
with both short ESL and high luminescence efficiency. Herein, we propose
an efficient machine learning approach based on a small dataset to
establish the ESL prediction model, thereby facilitating the discovery
of new Mn4+-activated fluorides with short ESLs. Such a
model can not only accurately predict the ESLs of Mn4+ in
fluorides but also quantify the impact of structure features on ESLs,
therefore elucidating the “structure-lifetime” correlations.
Guided by the correlations, two new Mn4+-doped tetramethylammonium
(TMA)-based hybrid fluorides (TMA)2BF6:Mn4+ (B = Sn or Hf) with both short ESLs (τ ≤ 3.7
ms) and high quantum efficiencies (internal QEs > 92%, external
QEs
> 55%) have been discovered successfully. A prototype displayer
with
excellent performance (∼124% National Television Standards
Committee (NTSC) color gamut) is assembled by employing a (TMA)2SnF6:Mn4+-based white Mini-LED backlight
module, demonstrating its practical prospects in high-quality displays.
This work not only brings promising candidates for Mn4+-doped fluoride phosphors but also provides a valuable reference
for accelerating the discovery of new promising phosphors