291 research outputs found

    Texas v. Johnson

    Get PDF

    Application of ZX-calculus to Quantum Architecture Search

    Full text link
    This paper presents a novel approach to quantum architecture search by integrating the techniques of ZX-calculus with Genetic Programming (GP) to optimize the structure of parameterized quantum circuits employed in Quantum Machine Learning (QML). Recognizing the challenges in designing efficient quantum circuits for QML, we propose a GP framework that utilizes mutations defined via ZX-calculus, a graphical language that can simplify visualizing and working with quantum circuits. Our methodology focuses on evolving quantum circuits with the aim of enhancing their capability to approximate functions relevant in various machine learning tasks. We introduce several mutation operators inspired by the transformation rules of ZX-calculus and investigate their impact on the learning efficiency and accuracy of quantum circuits. The empirical analysis involves a comparative study where these mutations are applied to a diverse set of quantum regression problems, measuring performance metrics such as the percentage of valid circuits after the mutation, improvement of the objective, as well as circuit depth and width. Our results indicate that certain ZX-calculus-based mutations perform significantly better than others for Quantum Architecture Search (QAS) in all metrics considered. They suggest that ZX-diagram based QAS results in shallower circuits and more uniformly allocated gates than crude genetic optimization based on the circuit model.Comment: 10 Pages, 10 figures, 1 algorith

    The First Amendment and National Security

    Get PDF

    The First Amendment and National Security

    Get PDF

    Guiding LLM Temporal Logic Generation with Explicit Separation of Data and Control

    Full text link
    Temporal logics are powerful tools that are widely used for the synthesis and verification of reactive systems. The recent progress on Large Language Models (LLMs) has the potential to make the process of writing such specifications more accessible. However, writing specifications in temporal logics remains challenging for all but the most expert users. A key question in using LLMs for temporal logic specification engineering is to understand what kind of guidance is most helpful to the LLM and the users to easily produce specifications. Looking specifically at the problem of reactive program synthesis, we explore the impact of providing an LLM with guidance on the separation of control and data--making explicit for the LLM what functionality is relevant for the specification, and treating the remaining functionality as an implementation detail for a series of pre-defined functions and predicates. We present a benchmark set and find that this separation of concerns improves specification generation. Our benchmark provides a test set against which to verify future work in LLM generation of temporal logic specifications

    Optimal parameters for the ocean's nutrient, carbon, and oxygen cycles compensate for circulation biases but replumb the biological pump

    Get PDF
    Accurate predictive modelling of the ocean's global carbon and oxygen cycles is challenging because of uncertainties in both biogeochemistry and ocean circulation. Advances over the last decade have made parameter optimization feasible, allowing models to better match observed biogeochemical fields. However, does fitting a biogeochemical model to observed tracers using a circulation with known biases robustly capture the inner workings of the biological pump? Here we embed a mechanistic model of the ocean's coupled nutrient, carbon, and oxygen cycles into two circulations for the current climate. To assess the effects of biases, one circulation (ACCESS-M) is derived from a climate model and the other from data assimilation of observations (OCIM2). We find that parameter optimization compensates for circulation biases at the expense of altering how the biological pump operates. Tracer observations constrain pump strength and regenerated inventories for both circulations, but ACCESS-M export production optimizes to twice that of OCIM2 to compensate for ACCESS-M having lower sequestration efficiencies driven by less efficient particle transfer and shorter residence times. Idealized simulations forcing complete Southern Ocean nutrient utilization show that the response of the optimized system is sensitive to the embedding circulation. In ACCESS-M, Southern Ocean nutrient and DIC trapping is partially short-circuited by unrealistically deep mixed layers. For both circulations, intense Southern Ocean production deoxygenates Southern-Ocean-sourced deep waters, muting the imprint of circulation biases on oxygen. Our findings highlight that the biological pump's plumbing needs careful assessment to predict the biogeochemical response to environmental changes, even when optimally matching observations.</p
    • …
    corecore