78 research outputs found
M-matrices satisfy Newton's inequalities
Newton's inequalities are shown to hold for the
normalized coefficients of the characteristic polynomial of any - or
inverse -matrix. They are derived by establishing first an auxiliary set of
inequalities also valid for both of these classes. They are also used to derive
some new necessary conditions on the eigenvalues of nonnegative matrices.Comment: 6 page
Applications of the duality method to generalizations of the Jordan canonical form
The Jordan normal form for a matrix over an arbitrary field and the canonical
form for a pair of matrices under contragredient equivalence are derived using
Ptak's duality method.Comment: 6 page
Communication-optimal Parallel and Sequential Cholesky Decomposition
Numerical algorithms have two kinds of costs: arithmetic and communication,
by which we mean either moving data between levels of a memory hierarchy (in
the sequential case) or over a network connecting processors (in the parallel
case). Communication costs often dominate arithmetic costs, so it is of
interest to design algorithms minimizing communication. In this paper we first
extend known lower bounds on the communication cost (both for bandwidth and for
latency) of conventional (O(n^3)) matrix multiplication to Cholesky
factorization, which is used for solving dense symmetric positive definite
linear systems. Second, we compare the costs of various Cholesky decomposition
implementations to these lower bounds and identify the algorithms and data
structures that attain them. In the sequential case, we consider both the
two-level and hierarchical memory models. Combined with prior results in [13,
14, 15], this gives a set of communication-optimal algorithms for O(n^3)
implementations of the three basic factorizations of dense linear algebra: LU
with pivoting, QR and Cholesky. But it goes beyond this prior work on
sequential LU by optimizing communication for any number of levels of memory
hierarchy.Comment: 29 pages, 2 tables, 6 figure
Toward accurate polynomial evaluation in rounded arithmetic
Given a multivariate real (or complex) polynomial and a domain ,
we would like to decide whether an algorithm exists to evaluate
accurately for all using rounded real (or complex) arithmetic.
Here ``accurately'' means with relative error less than 1, i.e., with some
correct leading digits. The answer depends on the model of rounded arithmetic:
We assume that for any arithmetic operator , for example or , its computed value is , where is bounded by some constant where , but
is otherwise arbitrary. This model is the traditional one used to
analyze the accuracy of floating point algorithms.Our ultimate goal is to
establish a decision procedure that, for any and , either exhibits
an accurate algorithm or proves that none exists. In contrast to the case where
numbers are stored and manipulated as finite bit strings (e.g., as floating
point numbers or rational numbers) we show that some polynomials are
impossible to evaluate accurately. The existence of an accurate algorithm will
depend not just on and , but on which arithmetic operators and
which constants are are available and whether branching is permitted. Toward
this goal, we present necessary conditions on for it to be accurately
evaluable on open real or complex domains . We also give sufficient
conditions, and describe progress toward a complete decision procedure. We do
present a complete decision procedure for homogeneous polynomials with
integer coefficients, {\cal D} = \C^n, and using only the arithmetic
operations , and .Comment: 54 pages, 6 figures; refereed version; to appear in Foundations of
Computational Mathematics: Santander 2005, Cambridge University Press, March
200
- …