82 research outputs found
Hepcidin analysis in pneumonia: Comparison of immunoassay and LC-MS/MS
Background
The iron-regulatory hormone hepcidin is a promising biomarker to differentiate anaemia of inflammation from iron deficiency. Plasma hepcidin concentrations increase substantially during inflammation, and the amount of smaller, non-biologically active isoforms of hepcidin increase in inflammatory conditions. These smaller isoforms are measured in some, but not all analytical methods. Thus, we evaluated the comparability of two analytical methods with different isoform selectivity during and after acute-phase pneumonia as a highly inflammatory model disease.
Methods
Blood samples from a cohort of 267 hospitalized community-acquired pneumonia patients collected at admission and a 6-week follow-up were analysed. Hepcidin was measured in plasma by an immunoassay, which recognizes all hepcidin isoforms, and a liquid chromatography tandem mass spectrometry (LC-MS/MS), which selectively measures the bioactive hepcidin-25. Additionally, a subset of serum samples was analysed by LC-MS/MS.
Results
Hepcidin measurements by immunoassay were higher compared with LC-MS/MS. The relative mean difference of hepcidin plasma concentrations between the two analytical methods was larger in admission samples than in follow-up samples (admission samples 200 ng/mL: 78%, follow-up samples >10 ng/mL: 22%). During acute-phase pneumonia, serum concentrations were on average 22% lower than plasma concentrations when measured by LC-MS/MS.
Conclusions
Immunoassay measured higher hepcidin concentrations compared with LC-MS/MS, with more pronounced differences in high-concentration samples during acute-phase pneumonia. These findings should be considered in local method validations and in future harmonization and standardization optimization of hepcidin measurements.publishedVersio
Omicron Variant Generates a Higher and More Sustained Viral Load in Nasopharynx and Saliva Than the Delta Variant of SARS-CoV-2
The Omicron variant of SARS-CoV-2 spreads more easily than earlier variants, possibly as a result of a higher viral load in the upper respiratory tract and oral cavity. Hence, we investigated whether the Omicron variant generates a higher viral load than that of the Delta variant in saliva and nasopharynx. Both specimens were collected from 52 Omicron and 17 Delta cases at two time points one week apart and analyzed by qRT-PCR. Viral load was measured as 10 log RNA genome copies per 1000 human cells according to the WHO reference standard. We found that Omicron cases carried a higher viral load and had more sustained viral shedding compared to the Delta cases, especially in the nasopharynx
Gut microbiota composition during hospitalization is associated with 60-day mortality after severe COVID-19
Background - Gut microbiota alterations have been reported in hospitalized COVID-19 patients, with reduced alpha diversity and altered microbiota composition related to respiratory failure. However, data regarding gut microbiota and mortality are scarce.
Methods - Rectal swabs for gut microbiota analyses were collected within 48 h after hospital admission (baseline; nâ=â123) and three-month post-admission (nâ=â50) in a subset of patients included in the Norwegian SARS-CoV2 cohort study. Samples were analysed by sequencing the 16S rRNA gene. Gut microbiota diversity and composition at baseline were assessed in relation to need for intensive care unit (ICU) admission during hospitalization. The primary objective was to investigate whether the ICU-related gut microbiota was associated with 60-day mortality.
Results - Gut microbiota diversity (Shannon index) at baseline was lower in COVID-19 patients requiring ICU admission during hospitalization than in those managed in general wards. A dysbiosis index representing a balance of enriched and reduced taxa in ICU compared with ward patients, including decreased abundance of butyrate-producing microbes and enrichment of a partly oral bacterial flora, was associated with need of ICU admission independent of antibiotic use, dexamethasone use, chronic pulmonary disease, PO2/FiO2 ratio, C-reactive protein, neutrophil counts or creatinine levels (adjusted pâ
Conclusions - Although our data should be regarded as exploratory due to low number of clinical end points, they suggest that gut microbiota alterations during hospitalization could be related to poor prognosis after severe COVID-19. Larger studies of gut involvement during COVID-19 in relation to long-term clinical outcome are warranted
Escalated complement activation during hospitalization is associated with higher risk of 60-day mortality in SARS-CoV-2-infected patients
Background. The complement system, an upstream
recognition system of innate immunity, is activated upon SARS-CoV-2 infection. To gain a deeper
understanding of the extent and duration of this
activation, we investigated complement activation
profiles during the acute phase of COVID-19, its
persistence post-recovery and dynamic changes in
relation to disease severity.
Methods. Serial blood samples were obtained from
two cohorts of hospitalized COVID-19 patients
(n = 457). Systemic complement activation products reflecting classical/lectin (C4d), alternative
(C3bBbP), common (C3bc) and terminal pathway
(TCC and C5a) were measured during hospitalization (admission, days 3â5 and days 7â10), at
3 months and after 1 year. Levels of activation
and temporal profiles during hospitalization were
related to disease severity defined as respiratory
failure (PO2/FiO2 ratio <26.6 kPa) and/or admission to intensive care unit, 60-day total mortality
and pulmonary pathology after 3 months.
Findings. During hospitalization, TCC, C4d, C3bc,
C3bBbP and C5a were significantly elevated compared to healthy controls. Severely ill patients
had significantly higher levels of TCC and C4d
(p < 0.001), compared to patients with moderate
COVID-19. Escalated levels of TCC and C4d during
hospitalization were associated with a higher risk
of 60-day mortality (p < 0.001), and C4d levels were
additionally associated with chest CT changes at 3
months (p < 0.001). At 3 months and 1 year, we
observed consistently elevated levels of most complement activation products compared to controls.
Conclusion. Hospitalized COVID-19 patients display
prominent and long-lasting systemic complement
activation. Optimal targeting of the system may be
achieved through enhanced risk stratification and
closer monitoring of in-hospital changes of complement activation products
Circulating markers of extracellular matrix remodelling in severe COVID-19 patients
Background
Abnormal remodelling of the extracellular matrix (ECM) has generally been linked to pulmonary inflammation and fibrosis and may also play a role in the pathogenesis of severe COVID-19. To further elucidate the role of ECM remodelling and excessive fibrogenesis in severe COVID-19, we examined circulating levels of mediators involved in various aspects of these processes in COVID-19 patients.
Methods
Serial blood samples were obtained from two cohorts of hospitalised COVID-19 patients (n = 414). Circulating levels of ECM remodelling mediators were quantified by enzyme immunoassays in samples collected during hospitalisation and at 3-month follow-up. Samples were related to disease severity (respiratory failure and/or treatment at the intensive care unit), 60-day total mortality and pulmonary pathology after 3-months. We also evaluated the direct effect of inactivated SARS-CoV-2 on the release of the different ECM mediators in relevant cell lines.
Results
Several of the measured markers were associated with adverse outcomes, notably osteopontin (OPN), S100 calcium-binding protein A12 and YKL-40 were associated with disease severity and mortality. High levels of ECM mediators during hospitalisation were associated with computed tomography thorax pathology after 3-months. Some markers (i.e. growth differential factor 15, galectin 3 and matrix metalloproteinase 9) were released from various relevant cell lines (i.e. macrophages and lung cell lines) in vitro after exposure to inactivated SARS-CoV-2 suggesting a direct link between these mediators and the causal agent of COVID-19.
Conclusion
Our findings highlight changes to ECM remodelling and particularly a possible role of OPN, S100A12 and YKL-40 in the pathogenesis of severe COVID-19
Systemic complement activation is associated with respiratory failure in COVID-19 hospitalized patients
The new SARS-CoV-2 pandemic leads to COVID-19 with respiratory failure, substantial morbidity, and significant mortality. Overactivation of the innate immune response is postulated to trigger this detrimental process. The complement system is a key player in innate immunity. Despite a few reports of local complement activation, there is a lack of evidence that the degree of systemic complement activation occurs early in COVID-19 patients, and whether this is associated with respiratory failure. This study shows that a number of complement activation products are systemically, consistently, and long-lastingly increased from admission and during the hospital stay. Notably, the terminal sC5b-9 complement complex was associated with respiratory failure. Thus, complement inhibition is an attractive therapeutic approach for treatment of COVD-19
Breakthrough infections with the omicron and delta variants of SARS-CoV-2 result in similar re-activation of vaccine-induced immunity
Background: Results showing that sera from double vaccinated individuals have minimal neutralizing activity against Omicron have been interpreted as indicating the need for a third vaccine dose for protection. However, there is little information about early immune responses to Omicron infection in double vaccinated individuals.
Methods: We measured inflammatory mediators, antibodies to the SARS-CoV-2 spike and nucleocapsid proteins, and spike peptide-induced release of interferon gamma in whole blood in 51 double-vaccinated individuals infected with Omicron, in 14 infected with Delta, and in 18 healthy controls. The median time points for the first and second samples were 7 and 14 days after symptom onset, respectively.
Findings: Infection with Omicron or Delta led to a rapid and similar increase in antibodies to the receptor-binding domain (RBD) of Omicron protein and spike peptide-induced interferon gamma in whole blood. Both the Omicron- and the Delta-infected patients had a mild and transient increase in inflammatory parameters.
<p<Interpretation: The results suggest that two vaccine doses are sufficient to mount a rapid and potent immune response upon infection in healthy individuals of with the Omicron variant
What is the recovery rate and risk of long-term consequences following a diagnosis of COVID-19?:A harmonised, global longitudinal observational study protocol
Introduction: Very little is known about possible clinical sequelae that may persist after resolution of acute COVID-19. A recent longitudinal cohort from Italy including 143 patients followed up after hospitalisation with COVID-19 reported that 87% had at least one ongoing symptom at 60-day follow-up. Early indications suggest that patients with COVID-19 may need even more psychological support than typical intensive care unit patients. The assessment of risk factors for longer term consequences requires a longitudinal study linked to data on pre-existing conditions and care received during the acute phase of illness. The primary aim of this study is to characterise physical and psychosocial sequelae in patients post-COVID-19 hospital discharge.
Methods and analysis: This is an international open-access prospective, observational multisite study. This protocol is linked with the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) and the WHOâs Clinical Characterisation Protocol, which includes patients with suspected or confirmed COVID-19 during hospitalisation. This protocol will follow-up a subset of patients with confirmed COVID-19 using standardised surveys to measure longer term physical and psychosocial sequelae. The data will be linked with the acute phase data. Statistical analyses will be undertaken to characterise groups most likely to be affected by sequelae of COVID-19. The open-access follow-up survey can be used as a data collection tool by other follow-up studies, to facilitate data harmonisation and to identify subsets of patients for further in-depth follow-up. The outcomes of this study will inform strategies to prevent long-term consequences; inform clinical management, interventional studies, rehabilitation and public health management to reduce overall morbidity; and improve long-term outcomes of COVID-19.
Ethics and dissemination: The protocol and survey are open access to enable low-resourced sites to join the study to facilitate global standardised, longitudinal data collection. Ethical approval has been given by sites in Colombia, Ghana, Italy, Norway, Russia, the UK and South Africa. New sites are welcome to join this collaborative study at any time. Sites interested in adopting the protocol as it is or in an adapted version are responsible for ensuring that local sponsorship and ethical approvals in place as appropriate. The tools are available on the ISARIC website (www.isaric.org)
Detailed stratified GWAS analysis for severe COVID-19 in four European populations
Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a âŒ0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.publishedVersio
Age-dependent impact of the major common genetic risk factor for COVID-19 on severity and mortality
AG has received support by NordForsk Nordic Trial Alliance (NTA) grant, by Academy of
Finland Fellow grant N. 323116 and the Academy of Finland for PREDICT consortium N.
340541.
The Richards research group is supported by the Canadian Institutes of Health Research
(CIHR) (365825 and 409511), the Lady Davis Institute of the Jewish General Hospital, the
Canadian Foundation for Innovation (CFI), the NIH Foundation, Cancer Research UK,
Genome Québec, the Public Health Agency of Canada, the McGill Interdisciplinary Initiative in
Infection and Immunity and the Fonds de Recherche Québec Santé (FRQS). TN is supported
by a research fellowship of the Japan Society for the Promotion of Science for Young
Scientists. GBL is supported by a CIHR scholarship and a joint FRQS and Québec Ministry of
Health and Social Services scholarship. JBR is supported by an FRQS Clinical Research
Scholarship. Support from Calcul Québec and Compute Canada is acknowledged. TwinsUK is
funded by the Welcome Trust, the Medical Research Council, the European Union, the
National Institute for Health Research-funded BioResource and the Clinical Research Facility
and Biomedical Research Centre based at Guyâs and St. Thomasâ NHS Foundation Trust in
partnership with Kingâs College London. The Biobanque QuĂ©bec COVID19 is funded by FRQS,
Genome Québec and the Public Health Agency of Canada, the McGill Interdisciplinary
Initiative in Infection and Immunity and the Fonds de Recherche Québec Santé. These funding
agencies had no role in the design, implementation or interpretation of this study.
The COVID19-Host(a)ge study received infrastructure support from the DFG Cluster of
Excellence 2167 âPrecision Medicine in Chronic Inflammation (PMI)â (DFG Grant: âEXC2167â).
The COVID19-Host(a)ge study was supported by the German Federal Ministry of Education
and Research (BMBF) within the framework of the Computational Life Sciences funding
concept (CompLS grant 031L0165). Genotyping in COVID19-Host(a)ge was supported by a
philantropic donation from Stein Erik Hagen.
The COVID GWAs, Premed COVID-19 study (COVID19-Host(a)ge_3) was supported by
"Grupo de Trabajo en Medicina Personalizada contra el COVID-19 de Andalucia"and also by
the Instituto de Salud Carlos III (CIBERehd and CIBERER). Funding comes from
COVID-19-GWAS, COVID-PREMED initiatives. Both of them are supported by "Consejeria de
Salud y Familias" of the Andalusian Government. DMM is currently funded by the the
Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018).
The Columbia University Biobank was supported by Columbia University and the National
Center for Advancing Translational Sciences, NIH, through Grant Number UL1TR001873. The content is solely the responsibility of the authors and does not necessarily represent the official
views of the NIH or Columbia University.
The SPGRX study was supported by the ConsejerĂa de EconomĂa, Conocimiento, Empresas y
Universidad #CV20-10150.
The GEN-COVID study was funded by: the MIUR grant âDipartimenti di Eccellenza 2018-2020â
to the Department of Medical Biotechnologies University of Siena, Italy; the âIntesa San Paolo
2020 charity fundâ dedicated to the project NB/2020/0119; and philanthropic donations to the
Department of Medical Biotechnologies, University of Siena for the COVID-19 host genetics
research project (D.L n.18 of March 17, 2020). Part of this research project is also funded by
Tuscany Region âBando Ricerca COVID-19 Toscanaâ grant to the Azienda Ospedaliero
Universitaria Senese (CUP I49C20000280002). Authors are grateful to: the CINECA
consortium for providing computational resources; the Network for Italian Genomes (NIG)
(http://www.nig.cineca.it) for its support; the COVID-19 Host Genetics Initiative
(https://www.covid19hg.org/); the Genetic Biobank of Siena, member of BBMRI-IT, Telethon
Network of Genetic Biobanks (project no. GTB18001), EuroBioBank, and RD-Connect, for
managing specimens.
Genetics against coronavirus (GENIUS), Humanitas University (COVID19-Host(a)ge_4) was
supported by Ricerca Corrente (Italian Ministry of Health), intramural funding (Fondazione
Humanitas per la Ricerca). The generous contribution of Banca Intesa San Paolo and of the
Dolce&Gabbana Fashion Firm is gratefully acknowledged.
Data acquisition and sample processing was supported by COVID-19 Biobank, Fondazione
IRCCS CĂ Granda Milano; LV group was supported by MyFirst Grant AIRC n.16888, Ricerca
Finalizzata Ministero della Salute RF-2016-02364358, Ricerca corrente Fondazione IRCCS
Caâ Granda Ospedale Maggiore Policlinico, the European Union (EU) Programme Horizon
2020 (under grant agreement No. 777377) for the project LITMUS- âLiver Investigation:
Testing Marker Utility in Steatohepatitisâ, Programme âPhotonicsâ under grant agreement
â101016726â for the project âREVEAL: Neuronal microscopy for cell behavioural examination
and manipulationâ, Fondazione Patrimonio Caâ Granda âLiver Bibleâ PR-0361. DP was
supported by Ricerca corrente Fondazione IRCCS Caâ Granda Ospedale Maggiore Policlinico,
CV PREVITAL âStrategie di prevenzione primaria nella popolazione Italianaâ Ministero della
Salute, and Associazione Italiana per la Prevenzione dellâEpatite Virale (COPEV).
Genetic modifiers for COVID-19 related illness (BeLCovid_1) was supported by the "Fonds
Erasme". The Host genetics and immune response in SARS-Cov-2 infection (BelCovid_2)
study was supported by grants from Fondation Léon Fredericq and from Fonds de la
Recherche Scientifique (FNRS).
The INMUNGEN-CoV2 study was funded by the Consejo Superior de Investigaciones
CientĂficas.
KUL is supported by the German Research Foundation (LU 1944/3-1) SweCovid is funded by the SciLifeLab/KAW national COVID-19 research program project
grant to Michael Hultström (KAW 2020.0182) and the Swedish Research Council to Robert
Frithiof (2014-02569 and 2014-07606). HZ is supported by Jeansson Stiftelser, Magnus
Bergvalls Stiftelse.
The COMRI cohort is funded by Technical University of Munich, Munich, Germany.
Genotyping for the COMRI cohort was performed and funded by the Genotyping Laboratory of
Institute for Molecular Medicine Finland FIMM Technology Centre, University of Helsinki,
Helsinki, Finland.
These funding agencies had no role in the design, implementation or interpretation of this
study.Background: There is considerable variability in COVID-19 outcomes amongst younger
adultsâand some of this variation may be due to genetic predisposition. We characterized the
clinical implications of the major genetic risk factor for COVID-19 severity, and its age-dependent
effect, using individual-level data in a large international multi-centre consortium.
Method: The major common COVID-19 genetic risk factor is a chromosome 3 locus, tagged by
the marker rs10490770. We combined individual level data for 13,424 COVID-19 positive
patients (N=6,689 hospitalized) from 17 cohorts in nine countries to assess the association of this
genetic marker with mortality, COVID-19-related complications and laboratory values. We next
examined if the magnitude of these associations varied by age and were independent from
known clinical COVID-19 risk factors.
Findings: We found that rs10490770 risk allele carriers experienced an increased risk of
all-cause mortality (hazard ratio [HR] 1·4, 95% confidence interval [CI] 1·2â1·6) and COVID-19
related mortality (HR 1·5, 95%CI 1·3â1·8). Risk allele carriers had increased odds of several
COVID-19 complications: severe respiratory failure (odds ratio [OR] 2·0, 95%CI 1·6-2·6),
venous thromboembolism (OR 1·7, 95%CI 1·2-2·4), and hepatic injury (OR 1·6, 95%CI
1·2-2·0). Risk allele carriers †60 years had higher odds of death or severe respiratory failure
(OR 2·6, 95%CI 1·8-3·9) compared to those > 60 years OR 1·5 (95%CI 1·3-1·9, interaction
p-value=0·04). Amongst individuals †60 years who died or experienced severe respiratory
COVID-19 outcome, we found that 31·8% (95%CI 27·6-36·2) were risk variant carriers,
compared to 13·9% (95%CI 12·6-15·2%) of those not experiencing these outcomes.
Prediction of death or severe respiratory failure among those †60 years improved when
including the risk allele (AUC 0·82 vs 0·84, p=0·016) and the prediction ability of rs10490770
risk allele was similar to, or better than, most established clinical risk factors.
Interpretation: The major common COVID-19 risk locus on chromosome 3 is associated with
increased risks of morbidity and mortalityâand these are more pronounced amongst individuals
†60 years. The effect on COVID-19 severity was similar to, or larger than most established risk
factors, suggesting potential implications for clinical risk management.Academy of
Finland Fellow grant N. 323116Academy of Finland for PREDICT consortium N.
340541.Canadian Institutes of Health Research
(CIHR) (365825 and 409511)Lady Davis Institute of the Jewish General HospitalCanadian Foundation for Innovation (CFI)NIH FoundationCancer Research UKGenome QuébecPublic Health Agency of CanadaMcGill Interdisciplinary Initiative in
Infection and Immunity and the Fonds de Recherche Québec Santé (FRQS)Japan Society for the Promotion of Science for Young
ScientistsCIHR scholarship and a joint FRQS and Québec Ministry of
Health and Social Services scholarshipFRQS Clinical Research
ScholarshipCalcul QuébecCompute CanadaWelcome TrustMedical Research CouncEuropean UnionNational Institute for Health Research-funded BioResourceClinical Research Facility
and Biomedical Research Centre based at Guyâs and St. Thomasâ NHS Foundation TrustKingâs College LondonGenome QuĂ©becPublic Health Agency of CanadaMcGill Interdisciplinary
Initiative in Infection and ImmunityFonds de Recherche QuĂ©bec SantĂ©(DFG Grant: âEXC2167â)(CompLS grant 031L0165)Stein Erik Hagen"Grupo de Trabajo en Medicina Personalizada contra el COVID-19 de Andalucia"Instituto de Salud Carlos III (CIBERehd and CIBERER)COVID-19-GWASCOVID-PREMED initiatives"Consejeria de
Salud y Familias" of the Andalusian GovernmentAndalusian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018)Columbia UniversityNational
Center for Advancing Translational SciencesNIH Grant Number UL1TR001873ConsejerĂa de EconomĂa, Conocimiento, Empresas y
Universidad #CV20-10150MIUR grant âDipartimenti di Eccellenza 2018-2020ââIntesa San Paolo
2020 charity fundâ dedicated to the project NB/2020/0119Tuscany Region âBando Ricerca COVID-19 ToscanaâCINECA
consortiumNetwork for Italian Genomes (NIG)COVID-19 Host Genetics InitiativeGenetic Biobank of SienaEuroBioBankRD-ConnectRicerca Corrente (Italian Ministry of Health)Fondazione
Humanitas per la RicercaBanca Intesa San PaoloDolce&Gabbana Fashion FirmCOVID-19 BiobankFondazione
IRCCS CĂ Granda MilanoMyFirst Grant AIRC n.16888Ricerca
Finalizzata Ministero della Salute RF-2016-02364358Ricerca corrente Fondazione IRCCS
Caâ Granda Ospedale Maggiore PoliclinicoEuropean Union (EU) Programme Horizon
2020 (under grant agreement No. 777377)âPhotonicsâ â101016726âFondazione Patrimonio Caâ Granda âLiver Bibleâ PR-0361CV PREVITAL âStrategie di prevenzione primaria nella popolazione Italianaâ Ministero della
Salute, and Associazione Italiana per la Prevenzione dellâEpatite Virale (COPEV)"Fonds
Erasme"Fondation Léon FredericqFonds de la
Recherche Scientifique (FNRS)Consejo Superior de Investigaciones
CientĂficasGerman Research Foundation (LU 1944/3-1)SciLifeLab/KAW national COVID-19 research program project (KAW 2020.0182)Swedish Research Council (2014-02569 and 2014-07606)Jeansson Stiftelser, Magnus
Bergvalls StiftelseTechnical University of Munich, Munich, GermanyGenotyping Laboratory of
Institute for Molecular Medicine Finland FIMM Technology Centre, University of Helsinki,
Helsinki, Finlan
- âŠ