726 research outputs found

    An odyssey into local refinement and multilevel preconditioning III: Implementation and numerical experiments

    Get PDF
    In this paper, we examine a number of additive and multiplicative multilevel iterative methods and preconditioners in the setting of two-dimensional local mesh refinement. While standard multilevel methods are effective for uniform refinement-based discretizations of elliptic equations, they tend to be less effective for algebraic systems, which arise from discretizations on locally refined meshes, losing their optimal behavior in both storage and computational complexity. Our primary focus here is on Bramble, Pasciak, and Xu (BPX)-style additive and multiplicative multilevel preconditioners, and on various stabilizations of the additive and multiplicative hierarchical basis (HB) method, and their use in the local mesh refinement setting. In parts I and II of this trilogy, it was shown that both BPX and wavelet stabilizations of HB have uniformly bounded condition numbers on several classes of locally refined two- and three-dimensional meshes based on fairly standard (and easily implementable) red and red-green mesh refinement algorithms. In this third part of the trilogy, we describe in detail the implementation of these types of algorithms, including detailed discussions of the data structures and traversal algorithms we employ for obtaining optimal storage and computational complexity in our implementations. We show how each of the algorithms can be implemented using standard data types, available in languages such as C and FORTRAN, so that the resulting algorithms have optimal (linear) storage requirements, and so that the resulting multilevel method or preconditioner can be applied with optimal (linear) computational costs. We have successfully used these data structure ideas for both MATLAB and C implementations using the FEtk, an open source finite element software package. We finish the paper with a sequence of numerical experiments illustrating the effectiveness of a number of BPX and stabilized HB variants for several examples requiring local refinement

    Convergence and Optimality of Adaptive Mixed Methods on Surfaces

    Full text link
    In a 1988 article, Dziuk introduced a nodal finite element method for the Laplace-Beltrami equation on 2-surfaces approximated by a piecewise-linear triangulation, initiating a line of research into surface finite element methods (SFEM). Demlow and Dziuk built on the original results, introducing an adaptive method for problems on 2-surfaces, and Demlow later extended the a priori theory to 3-surfaces and higher order elements. In a separate line of research, the Finite Element Exterior Calculus (FEEC) framework has been developed over the last decade by Arnold, Falk and Winther and others as a way to exploit the observation that mixed variational problems can be posed on a Hilbert complex, and Galerkin-type mixed methods can be obtained by solving finite dimensional subproblems. In 2011, Holst and Stern merged these two lines of research by developing a framework for variational crimes in abstract Hilbert complexes, allowing for application of the FEEC framework to problems that violate the subcomplex assumption of Arnold, Falk and Winther. When applied to Euclidean hypersurfaces, this new framework recovers the original a priori results and extends the theory to problems posed on surfaces of arbitrary dimensions. In yet another seemingly distinct line of research, Holst, Mihalik and Szypowski developed a convergence theory for a specific class of adaptive problems in the FEEC framework. Here, we bring these ideas together, showing convergence and optimality of an adaptive finite element method for the mixed formulation of the Hodge Laplacian on hypersurfaces.Comment: 22 pages, no figures. arXiv admin note: substantial text overlap with arXiv:1306.188
    • …
    corecore