6,550 research outputs found
Recommended from our members
Assimilation of Mars Climate Sounder Dust Observations: Challenges and Ways Forward
Introduction: Atmospheric dust is ubiquitous on Mars, and as a result of its absorption and scattering of radiation, is the key driver of the martian circulation. Accurately representing the complex spatial and temporal distribution of dust is therefore crucial for understanding Mars’ atmospheric dynamics. In particular, the vertical representation of the dust distribution in Mars’ atmosphere has been shown to have a significant effect on results from modelling and assimilation [1,2,3]. With the goal of more accurately representing this distribution, the assimilation of dust vertical information is a valuable technique which is being increasingly explored [4,5]. However, it brings with it its own challenges and methodological questions to be explored.
Model and assimilation details: We use the LMD-UK Mars Global Circulation Model (MGCM), which solves the meteorological primitive equations of fluid dynamics, radiative and other parameterised physics to calculate the state of the martian atmosphere [6,7]. The UK version of the MGCM possesses a spectral dynamical core and semi-Lagrangian advection scheme [8], and is a collaboration between the Laboratoire de Météorologie Dynamique, The Open University, the University of Oxford, and the Instituto de Astrofisica de Andalucia. The model was run using a range of spectral and vertical resolutions, the latter spaced logarithmically. The assimilation scheme used was a modified version of the Analysis Correction scheme developed at the Met Office [9], adapted for use on Mars [10]. This method has the advantage of being computationally in-expensive, and its use of repeated insertion, weighted over a time window of about six hours, helps counter the issue of relaxation of the atmospheric state – an especially significant problem given the low thermal inertia of Mars’ atmosphere.
Retrievals: The retrievals used in this study are from the Mars Climate Sounder (MCS) instrument aboard the Mars Reconnaissance Orbiter (MRO) [11], which now has amassed over five full martian years’ worth of data. For this study, the assimilated MCS variables were temperature and dust profiles. Temperature profiles extend from the surface to approximately 100 km, and dust profiles from as low as 10 km above the surface up to a maximum height of approximately 50 km. Retrieval of dust profiles allows MCS to observe the complex vertical dust structure in the atmosphere. The retrieval version used is 5.2, a re-processing using updated 2D geometry [12]. This results in improved retrievals, especially in the polar regions.
While not used in this study, the NOMAD instrument aboard ExoMars TGO will soon provide another high-volume source of dust profiles alongside MCS [13], and should return observations with an even higher vertical resolution.
Discussion: The assimilation of MCS dust profiles poses unique technical challenges, but presents the opportunity of representing Mars’ vertical dust distribution with unprecedented spatial and temporal accuracy within a GCM. Some outstanding questions for further experimentation and discussion include:
What are the optimal spatial and, in particular, vertical model resolutions for assimilation of this data?
Can dust profile assimilation aid in forecasting? Previous indirect assimilation of vertical dust via its MCS temperature signature has yielded a forecast time of 10 sols [5]; how dependent is this on the assimilation scheme and the choice of assimilating variables?
How should we approach the bimodal nature of MCS local times? Should we give higher weighting to nightside dust observations, which tend to have better vertical coverage due to reduced scattering? And how much can we validly infer from the high day-night variability seen in MCS dust profiles?
What are the best heuristics for filtering spurious opacities which could disrupt the assimilation, for example due to CO2 ice or surface reflectance [16])?
What are the optimal ways of dealing with spatial and temporal gaps in the dataset?
How can we best represent the dust distribution beyond the range of MCS, especially in the lowest 5-10 km of the atmosphere?
What are the advantages and disadvantages of directly assimilating the dust field vs indirectly up-dating the dust field via its temperature signature, as seen in Fig. 1?
Dust profile assimilation has been used to track individual dust storm events [4]; what can this tell us about storm formation and evolution, and can it be used for storm forecasting?
How can we best constrain and validate the column optical depths of MCS dust profiles?
Some ways forward regarding these questions will be explored, including comparative reanalyses and validation against different orbital datasets. Comparisons against MCS and other retrievals (such as NOMAD) should provide insight into the advantages of various in-model representations of features such as the dust distribution as well as the possible advantages or disadvantages of pruning the assimilated dataset. Meanwhile, alternate orbital or even ground-based sources of column opacity (such as Mars Express and MSL) could help better con-strain the distribution of dust not seen by MCS and offer clues how best to proceed in periods when MCS data is missing or limited. Some results of intercomparisons will be presented with the aim of fostering a more general discussion on MCS assimilation techniques.
References: [1] Lewis, S. R. et al., Icarus 192 (2), 327-347, 2007. [2] Rogberg, P. et al., QJRMS 136, 1614-1635, 2010. [3] Greybush, S. J. et al., JGR. 117, E11008, 2012. [4] Ruan, T., DPhil Thesis, 2015. [5] Navarro T. et al., Earth and Space Sci., 2017. [6] Forget, F. et al., JGR 104, 24155-24175, 1999. [7] Madeleine, J.-B. et al., JGR (Planets) 116, E11010, 2011. [8] Newman, C. E. et al., JGR 107, 5123, 2002. [9] Lorenc, A. C. et al., QJRMS 117, 59-89, 1991. [10] Lewis, S. R. et al., Icarus 192, 327-347, 2007. [11] McCleese, D. J. et al., J. Geophys. Res. 115, E12016, 2010. [12] Kleinböhl, A. et al., J. Quant. Spectrosc. Radiat. Transfer 187, 511-522, 2017. [13] Patel, M. R. et al., Appl. Opt. 56 (10), 2771-2782, 2017. [14] Navarro, T. et al., Geophys. Res. Lett. 41, 6620-6626, 2014. [15] Streeter, P. M. et al., 6th Intl. Workshop on the Mars Atmosphere, 2017. [16] Kleinböhl, A. et al., Icarus 261, 118-121, 2015
Optical properties and bioavailability of dissolved organic matter along a flow-path continuum from soil pore waters to the Kolyma River mainstem, East Siberia
The Kolyma River in northeast Siberia is among the six largest Arctic rivers and drains a region underlain by vast deposits of Holocene-aged peat and Pleistocene-aged loess known as yedoma, most of which is currently stored in ice-rich permafrost throughout the region. These peat and yedoma deposits are important sources of dissolved organic matter (DOM) to inland waters that in turn play a significant role in the transport and ultimate remineralization of organic carbon to CO2 and CH4 along the terrestrial flow-path continuum. The turnover and fate of terrigenous DOM during offshore transport largely depends upon the composition and amount of carbon released to inland and coastal waters. Here, we measured the ultraviolet-visible optical properties of chromophoric DOM (CDOM) from a geographically extensive collection of waters spanning soil pore waters, streams, rivers, and the Kolyma River mainstem throughout a ∼ 250 km transect of the northern Kolyma River basin. During the period of study, CDOM absorption coefficients were found to be robust proxies for the concentration of DOM, whereas additional CDOM parameters such as spectral slopes (S) were found to be useful indicators of DOM quality along the flow path. In particular, the spectral slope ratio (SR) of CDOM demonstrated statistically significant differences between all four water types and tracked changes in the concentration of bioavailable DOC, suggesting that this parameter may be suitable for clearly discriminating shifts in organic matter characteristics among water types along the full flow-path continuum across this landscape. However, despite our observations of downstream shifts in DOM composition, we found a relatively constant proportion of DOC that was bioavailable ( ∼ 3–6 % of total DOC) regardless of relative water residence time along the flow path. This may be a consequence of two potential scenarios allowing for continual processing of organic material within the system, namely (a) aquatic microorganisms are acclimating to a downstream shift in DOM composition and/or (b) photodegradation is continually generating labile DOM for continued microbial processing of DOM along the flow-path continuum. Without such processes, we would otherwise expect to see a declining fraction of bioavailable DOC downstream with increasing residence time of water in the system. With ongoing and future permafrost degradation, peat and yedoma deposits throughout the northeast Siberian region will become more hydrologically active, providing greater amounts of DOM to fluvial networks and ultimately to the Arctic Ocean. The ability to rapidly and comprehensively monitor shifts in the quantity and quality of DOM across the landscape is therefore critical for understanding potential future feedbacks within the Arctic carbon cycle
Imaging sub-milliarcsecond stellar features with intensity interferometry using air Cherenkov telescope arrays
Recent proposals have been advanced to apply imaging air Cherenkov telescope
arrays to stellar intensity interferometry (SII). Of particular interest is the
possibility of model-independent image recovery afforded by the good (u,
v)-plane coverage of these arrays, as well as recent developments in phase
retrieval techniques. The capabilities of these instruments used as SII
receivers have already been explored for simple stellar objects, and here the
focus is on reconstructing stellar images with non-uniform radiance
distributions. We find that hot stars (T > 6000 K) containing hot and/or cool
localized regions (T \sim 500 K) as small as \sim 0.1 mas can be imaged at
short wavelengths ({\lambda} = 400 nm).Comment: Accepted for publication in MNRAS. 6 pages, 10 figure
Does Relationship Lending Still Matter in the Consumer Banking Sector? Evidence from Two Financial Service Organizations in Vermont
We use actual loan applications submitted to a community development credit union (CDCU) and a traditional community bank to examine the role of relationship lending in the automobile loan market. We first show that the community bank relies upon credit scoring, not relationship lending; low-income households with poor credit histories are very unlikely to receive car loans from this traditional bank. We then show that relationship lending is a critical factor in the loan decision at the CDCU; low-income households with strong ties to the institution are likely to receive loans, despite poor credit histories. We conclude that as consolidation, deregulation and technology move mainstream financial institutions away from relationship lending and toward credit scoring, CDCUs will occupy an increasingly critical niche for low-income households.
Experimental and numerical analyses of laminar boundary-layer flow stability over an aircraft fuselage forebody
Fuelled by a need to reduce viscous drag of airframes, significant advances have been made in the last decade to design lifting surface geometries with considerable amounts of laminar flow. In contrast to the present understanding of practical limits for natural laminar flow over lifting surfaces, limited experimental results are available examining applicability of natural laminar flow over axisymmetric and nonaxisymmetric fuselage shapes at relevantly high length Reynolds numbers. The drag benefits attainable by realizing laminar flow over nonlifting aircraft components such as fuselages and nacelles are shown. A flight experiment to investigate transition location and transition mode over the forward fuselage of a light twin engine propeller driven airplane is examined
A Study of Methods to be Used in Developing a Handbook of Information on The Wyandotte, Oklahoma, Junior-Senior High School
This study is being made in an attempt to gather and evaluate data and information to be used in developing a handbook for the students, patrons, and teachers of the Wyandotte, Oklahoma, Junior-Senior High School
- …