754 research outputs found
Recommended from our members
Fully Depleted, Monolithic Pinned Photodiode CMOS Image Sensor Using Reverse Substrate Bias
A new pixel design using pinned photodiode (PPD) in a 180 nm CMOS image sensor (CIS) process has been developed as a proof of principle. The sensor can be fully depleted by means of reverse bias applied to the substrate, and the principle of operation is applicable to very thick sensitive volumes. Additional n-type implants under the in-pixel p-wells have been added to the manufacturing process in order to eliminate the large parasitic substrate current that would otherwise be present in a normal device. The new design exhibits nearly identical electro-optical performance under reverse bias as the reference PPD pixel it is based on, and the leakage current is effectively suppressed. The characterisation results from both front- and back-side illuminated sensor variants show that the epitaxial layer is fully depleted
Electron Multiplying Low-Voltage CCD With Increased Gain
Novel designs for the gain elements in electron multiplying (EM) CCDs have been implemented in a device manufactured in a low voltage CMOS process. Derived with help from TCAD simulations, the designs employ modified gate geometries in order to significantly increase the EM gain over traditional structures. Two new EM elements have been demonstrated with an order of magnitude higher gain than the typical rectangular gate designs, achieved over 100 amplifying stages and without an increase in the electric field. The principles presented in this work can be used in CMOS and CCD imagers employing electron multiplication in order to boost the gain and reduce undesirable effects such as clock-induced charge generation and gain ageing
Genetic algorithms: a pragmatic, non-parametric approach to exploratory analysis of questionnaires in educational research
Data from a survey to determine student attitudes to their courses are used as an example to show how genetic algorithms can be used in the analysis of questionnaire data. Genetic algorithms provide a means of generating logical rules which predict one variable in a data set by relating it to others. This paper explains the principle underlying genetic algorithms and gives a non-mathematical description of the means by which rules are generated. A commercially available computer program is used to apply genetic algorithms to the survey data. The results are discussed
Fully depleted and backside biased monolithic CMOS image sensor
We are presenting a novel concept for a fully depleted, monolithic, pinned photodiode CMOS image sensor using reverse substrate bias. The principle of operation allows the manufacture of backside illuminated CMOS sensors with active thickness in excess of 100 ┬╡m. This helps increase the QE at near-IR and soft X-ray wavelengths, while preserving the excellent characteristics associated with the pinned photodiode sensitive elements. Such sensors are relevant to a wide range of applications, including scientific imaging, astronomy, Earth observation and surveillance.
A prototype device with 10 ┬╡m and 5.4 ┬╡m pixels using this concept has been designed and is being manufactured on a 0.18 ┬╡m CMOS image sensor process. Only one additional implantation step has been introduced to the normal manufacturing flow to make this device. The paper discusses the design of the sensor and the challenges that had to be overcome to realise it in practice, and in particular the method of achieving full depletion without parasitic substrate currents. It is expected that this new technology can be competitive with modern backside illuminated thick CCDs for use at visible to near-IR telescopes and synchrotron light sources
C3TM: CEI CCD charge transfer model for radiation damage analysis and testing
Radiation induced defects in the silicon lattice of Charge Couple Devices (CCDs) are able to trap electrons during read out and thus create a smearing effect that is detrimental to the scientific data. To further our understanding of the positions and properties of individual radiation-induced traps and how they affect space- borne CCD performance, we have created the Centre for Electronic Imaging (CEI) CCD Charge Transfer Model (C3TM). This model simulates the physical processes taking place when transferring signal through a radiation damaged CCD. C3TM is a Monte Carlo model based on Shockley-Read-Hall theory, and it mimics the physical properties in the CCD as closely as possible. It runs on a sub-electrode level taking device specific charge density simulations made with professional TCAD software as direct input. Each trap can be specified with 3D positional information, emission time constant and other physical properties. The model is therefore also able to simulate multi-level clocking and other complex clocking schemes, such as trap pumping
Importance of charge capture in interphase regions during readout of charge-coupled devices
The current understanding of charge transfer dynamics in charge-coupled devices (CCDs) is that charge is moved so quickly from one phase to the next in a clocking sequence and with a density so low that trapping of charge in the interphase regions is negligible. However, simulation capabilities developed at the Centre for Electronic Imaging, which includes direct input of electron density simulations, have made it possible to investigate this assumption further. As part of the radiation testing campaign of the Euclid CCD273 devices, data have been obtained using the trap pumping method, a method that can be used to identify and characterize single defects within CCDs. Combining these data with simulations, we find that trapping during the transfer of charge among phases is indeed necessary to explain the results of the data analysis. This result could influence not only trap pumping theory and how trap pumping should be performed but also how a radiation-damaged CCD is readout in the most optimal way
Postirradiation behavior of p-channel charge-coupled devices irradiated at 153 K
The displacement damage hardness that can be achieved using p-channel charge-coupled devices (CCD) was originally demonstrated in 1997, and since then a number of other studies have demonstrated an improved tolerance to radiation-induced CTI when compared to n-channel CCDs. A number of recent studies have also shown that the temperature history of the device after the irradiation impacts the performance of the detector, linked to the mobility of defects at different temperatures. This study describes the initial results from an e2v technologies p-channel CCD204 irradiated at 153 K with a 10 MeV equivalent proton fluences of 1.24├Ч109 and 1.24├Ч1011 protons cm-2. The dark current, cosmetic quality and the number of defects identified using trap pumping immediately were monitored after the irradiation for a period of 150 hours with the device held at 153 K and then after different periods of time at room temperature. The device also exhibited a flatband voltage shift of around 30 mV / krad, determined by the reduction in full well capacity
Recommended from our members
Examining the taphonomic challenges to the 3D digitisation of fragmented bone
The utilisation of 3D digitisation and visualisation has grown considerably since 2008 and is becoming an increasingly useful tool for the digital documentation and metric analysis of archaeological artefacts and skeletal remains. It provides public access to rare and fragile specimens of palaeontological and palaeopathological importance whilst reducing the physical impact on these remains.
Research in engineering and computer vision provides some insight into the impact of surface properties such as colour, specularity, reflectance and shape on the quality of the recorded 3D image, but within the archaeological and palaeontological disciplines comparable work has not yet been developed.
If archaeology and anthropology are to provide long term reliable data from archaeological and palaeontological specimens in a way that doesnтАЩt require repeated re-digitisation, we need to understand the impacts that the taphonomic histories of such samples have on our ability to 3D record them. Understanding the relationship of these taphonomic histories and the surface and optical properties will promote informed choices about the suitability of recording techniques.
This thesis considers the taphonomic processes that affect the preservation of bone over archaeological, forensic and palaeontological timescales and the effect this has on the quality of 3D digital models. The digital refit of fragmentary bone samples is considered in relation to the effect of taphonomic alterations to bone.
Conclusions regarding the key taphonomic factors and 3D digital model quality are drawn and areas of further work are identified.Arts and Humanities Research Counci
Evolution and impact of defects in a p-channel CCD after cryogenic proton-irradiation
P-channel CCDs have been shown to display improved tolerance to radiation-induced charge transfer inefficiency (CTI) when compared to n-channel CCDs. However, the defect distribution formed during irradiation is expected to be temperature dependent due to the differences in lattice energy caused by a temperature change. This has been tested through defect analysis of two p-channel e2v CCD204 devices, one irradiated at room temperature and one at a cryogenic temperature (153K). Analysis is performed using the method of single trap pumping. The dominant charge trapping defects at these conditions have been identified as the donor level of the silicon divacancy and the carbon interstitial defect. The defect parameters are analysed both immediately post irradiation and following several subsequent room-temperature anneal phases up until a cumulative anneal time of approximately 10 months. We have also simulated charge transfer in an irradiated CCD pixel using the defect distribution from both the room-temperature and cryogenic case, to study how the changes affect imaging performance. The results demonstrate the importance of cryogenic irradiation and annealing studies, with large variations seen in the defect distribution when compared to a device irradiated at room-temperature, which is the current standard procedure for radiation-tolerance testing
- тАж