2 research outputs found

    Electrical Contact at the Interface between Silicon and Transfer-Printed Gold Films by Eutectic Joining

    No full text
    This paper presents the electrical and morphological properties at the interface between a metal (Au) and a semiconductor (Si) formed by a novel transfer-printing technology. This work shows that a transfer-printed thin (hundreds of nanometers) Au film forms excellent electrical contact on a Si substrate when appropriate thermal treatment is applied. The successful electrical contact is attributed to eutectic joining, which allows for the right amount of atomic level mass transport between Au and Si. The outcomes suggest that transfer-printing-based micromanufacturing can realize not only strong mechanical bonding but also high-quality electrical contact via eutectic joining

    Transfer-Printing of Tunable Porous Silicon Microcavities with Embedded Emitters

    No full text
    Here we demonstrate, via a modified transfer-printing technique, that electrochemically fabricated porous silicon (PSi) distributed Bragg reflectors (DBRs) can serve as the basis of high-quality hybrid microcavities compatible with most forms of photoemitters. Vertical microcavities consisting of an emitter layer sandwiched between 11- and 15-period PSi DBRs were constructed. The emitter layer included a polymer doped with PbS quantum dots, as well as a heterogeneous GaAs thin film. In this structure, the PbS emission was significantly redistributed to a 2.1 nm full-width at half-maximum around 1198 nm, while the PSi/GaAs hybrid microcavity emitted at 902 nm with a sub-nanometer full-width at half-maximum and quality-factor of 1058. Modification of PSi DBRs to include a PSi cavity coupling layer enabled tuning of the total cavity optical thickness. Infiltration of the PSi with Al<sub>2</sub>O<sub>3</sub> by atomic layer deposition globally red-shifted the emission peak of PbS quantum dots up to ∼18 nm (∼0.9 nm per cycle), while introducing a cavity coupling layer with a gradient optical thickness spatially modulated the cavity resonance of the PSi/GaAs hybrid such that there was an ∼30 nm spectral variation in the emission of separate GaAs modules printed ∼3 mm apart
    corecore