267 research outputs found
Recommended from our members
Sensory sensitivity as a link between concussive traumatic brain injury and PTSD.
Traumatic brain injury (TBI) is one of the most common injuries to military personnel, a population often exposed to stressful stimuli and emotional trauma. Changes in sensory processing after TBI might contribute to TBI-post traumatic stress disorder (PTSD) comorbidity. Combining an animal model of TBI with an animal model of emotional trauma, we reveal an interaction between auditory sensitivity after TBI and fear conditioning where 75 dB white noise alone evokes a phonophobia-like phenotype and when paired with footshocks, fear is robustly enhanced. TBI reduced neuronal activity in the hippocampus but increased activity in the ipsilateral lateral amygdala (LA) when exposed to white noise. The white noise effect in LA was driven by increased activity in neurons projecting from ipsilateral auditory thalamus (medial geniculate nucleus). These data suggest that altered sensory processing within subcortical sensory-emotional circuitry after TBI results in neutral stimuli adopting aversive properties with a corresponding impact on facilitating trauma memories and may contribute to TBI-PTSD comorbidity
Laminin α5 is necessary for submandibular gland epithelial morphogenesis and influences FGFR expression through β1 integrin signaling
AbstractLaminin α chains have unique spatiotemporal expression patterns during development and defining their function is necessary to understand the regulation of epithelial morphogenesis. We investigated the function of laminin α5 in mouse submandibular glands (SMGs). Lama5−/− SMGs have a striking phenotype: epithelial clefting is delayed, although proliferation occurs; there is decreased FGFR1b and FGFR2b, but no difference in Lama1 expression; later in development, epithelial cell organization and lumen formation are disrupted. In wild-type SMGs α5 and α1 are present in epithelial clefts but as branching begins α5 expression increases while α1 decreases. Lama5 siRNA decreased branching, p42 MAPK phosphorylation, and FGFR expression, and branching was rescued by FGF10. FGFR siRNA decreased Lama5 suggesting that FGFR signaling provides positive feedback for Lama5 expression. Anti-β1 integrin antibodies decreased FGFR and Lama5 expression, suggesting that β1 integrin signaling provides positive feedback for Lama5 and FGFR expression. Interestingly, the Itga3−/−:Itga6−/− SMGs have a similar phenotype to Lama5−/−. Our findings suggest that laminin α5 controls SMG epithelial morphogenesis through β1 integrin signaling by regulating FGFR expression, which also reciprocally regulates the expression of Lama5. These data link changes in basement membrane composition during branching morphogenesis with FGFR expression and signaling
Synthesis of the elements in stars: forty years of progress
Forty years ago Burbidge, Burbidge, Fowler, and Hoyle combined what we would now call fragmentary evidence from nuclear physics, stellar evolution and the abundances of elements and isotopes in the solar system as well as a few stars into a synthesis of remarkable ingenuity. Their review provided a foundation for forty years of research in all of the aspects of low energy nuclear experiments and theory, stellar modeling over a wide range of mass and composition, and abundance studies of many hundreds of stars, many of which have shown distinct evidence of the processes suggested by B2FH. In this review we summarize progress in each of these fields with emphasis on the most recent developments
Cholinergic Signaling Alters Stress-Induced Sensitization of Hippocampal Contextual Learning
Post-traumatic stress disorder (PTSD) has a profound contextual component, and has been demonstrated to alter future contextual learning. However, the mechanism by which a single traumatic event affects subsequent contextual experiences has not been isolated. Acetylcholine (ACh) is an important modulator of hippocampus-dependent learning such as contextual memory strength. Using Stress-Enhanced Fear Learning (SEFL), which models aspects of PTSD in rats, we tested whether muscarinic acetylcholine receptors (mAChR) in dorsal hippocampus (DH) are required during trauma for the effect of trauma on subsequent contextual fear learning. We infused scopolamine or vehicle into DH immediately before stress, and tested fear in both the trauma context and a novel context after a mild stressor. The results show that during learning, ACh acting on mAChR within the DH is required for sensitization of future contextual fear learning. However, this effect is selective for contextual learning, as this blockade leaves discrete cue sensitization intact. Rather than simply sensitizing the BLA, as previous studies have suggested, SEFL requires cholinergic signaling in DH for contextual sensitization
Demographic, risk behaviour and personal network variables associated with prevalent hepatitis C, hepatitis B, and HIV infection in injection drug users in Winnipeg, Canada
BACKGROUND: Previous studies have used social network variables to improve our understanding of HIV transmission. Similar analytic approaches have not been undertaken for hepatitis C (HCV) or B (HBV), nor used to conduct comparative studies on these pathogens within a single setting. METHODS: A cross-sectional survey consisting of a questionnaire and blood sample was conducted on injection drug users in Winnipeg between December 2003 and September 2004. Logistic regression analyses were used to correlate respondent and personal network data with HCV, HBV and HIV prevalence. RESULTS: At the multivariate level, pathogen prevalence was correlated with both respondent and IDU risk network variables. Pathogen transmission was associated with several distinct types of high-risk networks formed around specific venues (shooting galleries, hotels) or within users who are linked by their drug use preferences. Smaller, isolated pockets of IDUs also appear to exist within the larger population where behavioural patterns pose a lesser risk, unless or until, a given pathogen enters those networks. CONCLUSION: The findings suggest that consideration of both respondent and personal network variables can assist in understanding the transmission patterns of HCV, HBV, and HIV. It is important to assess these effects for multiple pathogens within one setting as the associations identified and the direction of those associations can differ between pathogens
Researching COVID to Enhance Recovery (RECOVER) Pregnancy Study: Rationale, Objectives and Design
IMPORTANCE: Pregnancy induces unique physiologic changes to the immune response and hormonal changes leading to plausible differences in the risk of developing post-acute sequelae of SARS-CoV-2 (PASC), or Long COVID. Exposure to SARS-CoV-2 during pregnancy may also have long-term ramifications for exposed offspring, and it is critical to evaluate the health outcomes of exposed children. The National Institutes of Health (NIH) Researching COVID to Enhance Recovery (RECOVER) Multi-site Observational Study of PASC aims to evaluate the long-term sequelae of SARS-CoV-2 infection in various populations. RECOVER-Pregnancy was designed specifically to address long-term outcomes in maternal-child dyads.
METHODS: RECOVER-Pregnancy cohort is a combined prospective and retrospective cohort that proposes to enroll 2,300 individuals with a pregnancy during the COVID-19 pandemic and their offspring exposed and unexposed in utero, including single and multiple gestations. Enrollment will occur both in person at 27 sites through the Eunice Kennedy Shriver National Institutes of Health Maternal-Fetal Medicine Units Network and remotely through national recruitment by the study team at the University of California San Francisco (UCSF). Adults with and without SARS-CoV-2 infection during pregnancy are eligible for enrollment in the pregnancy cohort and will follow the protocol for RECOVER-Adult including validated screening tools, laboratory analyses and symptom questionnaires followed by more in-depth phenotyping of PASC on a subset of the overall cohort. Offspring exposed and unexposed in utero to SARS-CoV-2 maternal infection will undergo screening tests for neurodevelopment and other health outcomes at 12, 18, 24, 36 and 48 months of age. Blood specimens will be collected at 24 months of age for SARS-CoV-2 antibody testing, storage and anticipated later analyses proposed by RECOVER and other investigators.
DISCUSSION: RECOVER-Pregnancy will address whether having SARS-CoV-2 during pregnancy modifies the risk factors, prevalence, and phenotype of PASC. The pregnancy cohort will also establish whether there are increased risks of adverse long-term outcomes among children exposed in utero.
CLINICAL TRIALS.GOV IDENTIFIER: Clinical Trial Registration: http://www.clinicaltrials.gov. Unique identifier: NCT05172011
Dark Energy from Mass Varying Neutrinos
We show that mass varying neutrinos (MaVaNs) can behave as a negative
pressure fluid which could be the origin of the cosmic acceleration. We derive
a model independent relation between the neutrino mass and the equation of
state parameter of the neutrino dark energy, which is applicable for general
theories of mass varying particles. The neutrino mass depends on the local
neutrino density and the observed neutrino mass can exceed the cosmological
bound on a constant neutrino mass. We discuss microscopic realizations of the
MaVaN acceleration scenario, which involve a sterile neutrino. We consider
naturalness constraints for mass varying particles, and find that both ev
cutoffs and ev mass particles are needed to avoid fine-tuning. These
considerations give a (current) mass of order an eV for the sterile neutrino in
microscopic realizations, which could be detectable at MiniBooNE. Because the
sterile neutrino was much heavier at earlier times, constraints from big bang
nucleosynthesis on additional states are not problematic. We consider regions
of high neutrino density and find that the most likely place today to find
neutrino masses which are significantly different from the neutrino masses in
our solar system is in a supernova. The possibility of different neutrino mass
in different regions of the galaxy and the local group could be significant for
Z-burst models of ultra-high energy cosmic rays. We also consider the cosmology
of and the constraints on the ``acceleron'', the scalar field which is
responsible for the varying neutrino mass, and briefly discuss neutrino density
dependent variations in other constants, such as the fine structure constant.Comment: 26 pages, 3 figures, refs added, typos corrected, comment added about
possible matter effect
BAF complex maintains glioma stem cells in pediatric H3K27M glioma
Diffuse midline gliomas are uniformly fatal pediatric central nervous system cancers that are refractory to standard-of-care therapeutic modalities. The primary genetic drivers are a set of recurrent amino acid substitutions in genes encoding histone H3 (H3K27M), which are currently undruggable. These H3K27M oncohistones perturb normal chromatin architecture, resulting in an aberrant epigenetic landscape. To interrogate for epigenetic dependencies, we performed a CRISPR screen and show that patient-derived H3K27M-glioma neurospheres are dependent on core components of the mammalian BAF (SWI/SNF) chromatin remodeling complex. The BAF complex maintains glioma stem cells in a cycling, oligodendrocyte precursor cell–like state, in which genetic perturbation of the BAF catalytic subunit SMARCA4 (BRG1), as well as pharmacologic suppression, opposes proliferation, promotes progression of differentiation along the astrocytic lineage, and improves overall survival of patient-derived xenograft models. In summary, we demonstrate that therapeutic inhibition of the BAF complex has translational potential for children with H3K27M gliomas.
Significance:
Epigenetic dysregulation is at the core of H3K27M-glioma tumorigenesis. Here, we identify the BRG1–BAF complex as a critical regulator of enhancer and transcription factor landscapes, which maintain H3K27M glioma in their progenitor state, precluding glial differentiation, and establish pharmacologic targeting of the BAF complex as a novel treatment strategy for pediatric H3K27M glioma
The Impact of Acute Psychosocial Stress on Magnetoencephalographic Correlates of Emotional Attention and Exogenous Visual Attention
Stress-induced acute activation of the cerebral catecholaminergic systems has often been found in rodents. However, little is known regarding the consequences of this activation on higher cognitive functions in humans. Theoretical inferences would suggest increased distractibility in the sense of increased exogenous attention and emotional attention. The present study investigated the influence of acute stress responses on magnetoencephalographic (MEG) correlates of visual attention. Healthy male subjects were presented emotional and neutral pictures in three subsequent MEG recording sessions after being exposed to a TSST-like social stressor, intended to trigger a HPA-response. The subjects anticipation of another follow-up stressor was designed to sustain the short-lived central catecholaminergic stress reactions throughout the ongoing MEG recordings. The heart rate indicates a stable level of anticipatory stress during this time span, subsequent cortisol concentrations and self-report measures of stress were increased. With regard to the MEG correlates of attentional functions, we found that the N1m amplitude remained constantly elevated during stressor anticipation. The magnetic early posterior negativity (EPNm) was present but, surprisingly, was not at all modulated during stressor anticipation. This suggests that a general increase of the influence of exogenous attention but no specific effect regarding emotional attention in this time interval. Regarding the time course of the effects, an influence of the HPA on these MEG correlates of attention seems less likely. An influence of cerebral catecholaminergic systems is plausible, but not definite
- …