32,477 research outputs found
Modeling and analysis of cascade solar cells
A brief review is given of the present status of the development of cascade solar cells. It is known that photovoltaic efficiencies can be improved through this development. The designs and calculations of the multijunction cells, however, are quite complicated. The main goal is to find a method which is a compromise between accuracy and simplicity for modeling a cascade solar cell. Three approaches are presently under way, among them (1) equivalent circuit approach, (2) numerical approach, and (3) analytical approach. Here, the first and the second approaches are discussed. The equivalent circuit approach using SPICE (Simulation Program, Integrated Circuit Emphasis) to the cascade cells and the cascade-cell array is highlighted. The methods of extracting parameters for modeling are discussed
Dynamics of thermalisation in small Hubbard-model systems
We study numerically the thermalisation and temporal evolution of the reduced
density matrix for a two-site subsystem of a fermionic Hubbard model prepared
far from equilibrium at a definite energy. Even for very small systems near
quantum degeneracy, the subsystem can reach a steady state resembling
equilibrium. This occurs for a non-perturbative coupling between the subsystem
and the rest of the lattice where relaxation to equilibrium is Gaussian in
time, in sharp contrast to perturbative results. We find similar results for
random couplings, suggesting such behaviour is generic for small systems.Comment: 4 pages, 5 figure
Feshbach resonant scattering of three fermions in one-dimensional wells
We study the weak-tunnelling limit for a system of cold 40K atoms trapped in
a one-dimensional optical lattice close to an s-wave Feshbach resonance. We
calculate the local spectrum for three atoms at one site of the lattice within
a two-channel model. Our results indicate that, for this one-dimensional
system, one- and two-channel models will differ close to the Feshbach
resonance, although the two theories would converge in the limit of strong
Feshbach coupling. We also find level crossings in the low-energy spectrum of a
single well with three atoms that may lead to quantum phase transition for an
optical lattice of many wells. We discuss the stability of the system to a
phase with non-uniform density.Comment: 10 pages, 5 figure
Effects of thermal and mechanical fatigue on the flexural strength of G40-600/PMR-15 cross-ply laminates
The effects of thermal and mechanical fatigue on the flexural strength of G40-600/PMR-15 cross-ply laminates with ply orientation of (0(2),90(2))2S and (90(2),0(2))2S are examined. The relative importance of shear and tensile stresses is examined by varying the span-to-depth ratios of flexural test specimens from 8 to 45. Acoustic emission signals are measured during the flexural tests in order to monitor the initiation and growth of damage. Optical microscopy is used to examine specimens for resin cracking, delamination, and fiber breaks after testing. Transverse matrix cracks and delaminations occur in all specimens, regardless of ply orientation, span-to-depth ratio, or previous exposure of specimens to thermal and mechanical fatigue. A small amount of fiber tensile fracture occurs in the outer 0 deg ply of specimens with high span-to-depth ratios. Because of the complex failure modes, the flexural test results represent the 'apparent' strengths rather than the true flexural or shear strengths for these cross-ply laminates. Thermal cycling of specimens prior to flexural testing does not reduce the apparent flexural strength or change the mode of failure. However, fewer acoustic events are recorded at all strains during flexural testing of specimens exposed to prior thermal cycling. High temperature thermal cycling (32 to 260 C, 100 cycles) causes a greater reduction in acoustic events than low temperature thermal cycling (-85 to +85 C, 500 cycles). Mechanical cycling (0 to 50 percent of the flexural strength, 100 cycles) has a similar effect, except that acoustic events are reduced only at strains less than the maximum strain applied during flexural fatigue
VLA Imaging of the Disk Surrounding the Nearby Young Star TW Hya
The TW Hya system is perhaps the closest analog to the early solar nebula. We
have used the Very Large Array to image TW Hya at wavelengths of 7mm and 3.6 cm
with resolutions 0.1 arcseconds (about 5 AU) and 1.0 arcseconds (about 50 AU),
respectively. The 7mm emission is extended and appears dominated by a dusty
disk of radius larger than 50 AU surrounding the star. The 3.6 cm emission is
unresolved and likely arises from an ionized wind or gyrosynchrotron activity.
The dust spectrum and spatially resolved 7mm images of the TW Hya disk are
fitted by a simple model with temperature and surface density described by
radial power laws, and . These
properties are consistent with an irradiated gaseous accretion disk of mass
with an accretion rate and viscosity parameter . The estimates of
mass and mass accretion rates are uncertain as the gas-to-dust ratio in the TW
Hya disk may have evolved from the standard interstellar value.Comment: 13 pages, 3 figures, accepted by ApJ Letter
Ultrasonic characterization of the pulmonary venous wall: echographic and histological correlation
Background: Pulmonary vein isolation with radiofrequency catheter ablation techniques is used to prevent recurrences of human atrial fibrillation. Visualization of the architecture at the venoatrial junction could be crucial for these ablative techniques. Our study assesses the potential for intravascular ultrasound to provide this information.
Methods and Results: We retrieved 32 pulmonary veins from 8 patients dying from noncardiac causes. We obtained cross-sectional intravascular ultrasound (IVUS) images with a 3.2F, 30-MHz ultrasound catheter at intervals on each vein. Histological cross-sections at the intervals allowed comparisons with ultrasonic images. The pulmonary venous wall at the venoatrial junction revealed a 3-layered ultrasonic pattern. The inner echogenic layer represents both endothelium and connective tissue of the media (mean maximal thickness, 1.4±0.3 mm). The middle hypoechogenic stratum corresponds to the sleeves of left atrial myocardium surrounding the external aspect of the venous media. This layer was thickest at the venoatrial junction (mean maximal thickness, 2.6±0.8 mm) and decreased toward the lung hilum. The outer echodense layer corresponds to fibro-fatty adventitial tissue (mean maximal thickness, 2.15±0.36 mm). We found a close agreement among the IVUS and histological measurements for maximal luminal diameter (mean difference, -0.12±1.3 mm) and maximal muscular thickness (mean difference, 0.17±0.13 mm) using the Bland and Altman method.
Conclusions: Our experimental study demonstrates for the first time that IVUS images of the pulmonary veins can provide information on the distal limits and thickness of the myocardial sleeves and can be a valuable tool to help accurate targeting during ablative procedures
Efficient out-coupling and beaming of Tamm optical states via surface plasmon polariton excitation
We present evidence of optical Tamm states to surface plasmon polariton (SPP) coupling. We experimentally demonstrate that for a Bragg stack with a thin metal layer on the surface, hybrid Tamm-SPP modes may be excited when a grating on the air-metal interface is introduced. Out-coupling via the grating to free space propagation is shown to enhance the transmission as well as the directionality and polarization selection for the transmitted beam. We suggest that this system will be useful on those devices, where a metallic electrical contact as well as beaming and polarization control is needed
Thermalisation of Local Observables in Small Hubbard Lattices
We present a study of thermalisation of a small isolated Hubbard lattice
cluster prepared in a pure state with a well-defined energy. We examine how a
two-site subsystem of the lattice thermalises with the rest of the system as
its environment. We explore numerically the existence of thermalisation over a
range of system parameters, such as the interaction strength, system size and
the strength of the coupling between the subsystem and the rest of the lattice.
We find thermalisation over a wide range of parameters and that interactions
are crucial for efficient thermalisation of small systems. We relate this
thermalisation behaviour to the eigenstate thermalisation hypothesis and
quantify numerically the extent to which eigenstate thermalisation holds. We
also verify our numerical results theoretically with the help of previously
established results from random matrix theory for the local density of states,
particularly the finite-size scaling for the onset of thermalisation.Comment: 22 pages, 23 figure
Ab-initio calculation of all-optical time-resolved calorimetry of nanosized systems: Evidence of nanosecond-decoupling of electron and phonon temperatures
The thermal dynamics induced by ultrashort laser pulses in nanoscale systems,
i.e. all-optical time-resolved nanocalorimetry is theoretically investigated
from 300 to 1.5 K. We report ab-initio calculations describing the temperature
dependence of the electron-phonon interactions for Cu nanodisks supported on
Si. The electrons and phonons temperatures are found to decouple on the ns time
scale at 10 K, which is two orders of magnitude in excess with respect to that
found for standard low-temperature transport experiments. By accounting for the
physics behind our results we suggest an alternative route for overhauling the
present knowledge of the electron-phonon decoupling mechanism in nanoscale
systems by replacing the mK temperature requirements of conventional
experiments with experiments in the time-domain.Comment: 5 pages, 3 figures. Accepted on Physical Review B
- …