3,946 research outputs found
Distributed Stochastic Optimization over Time-Varying Noisy Network
This paper is concerned with distributed stochastic multi-agent optimization
problem over a class of time-varying network with slowly decreasing
communication noise effects. This paper considers the problem in composite
optimization setting which is more general in noisy network optimization. It is
noteworthy that existing methods for noisy network optimization are Euclidean
projection based. We present two related different classes of non-Euclidean
methods and investigate their convergence behavior. One is distributed
stochastic composite mirror descent type method (DSCMD-N) which provides a more
general algorithm framework than former works in this literature. As a
counterpart, we also consider a composite dual averaging type method (DSCDA-N)
for noisy network optimization. Some main error bounds for DSCMD-N and DSCDA-N
are obtained. The trade-off among stepsizes, noise decreasing rates,
convergence rates of algorithm is analyzed in detail. To the best of our
knowledge, this is the first work to analyze and derive convergence rates of
optimization algorithm in noisy network optimization. We show that an optimal
rate of in nonsmooth convex optimization can be obtained for
proposed methods under appropriate communication noise condition. Moveover,
convergence rates in different orders are comprehensively derived in both
expectation convergence and high probability convergence sense.Comment: 27 page
A New Approach to Linear/Nonlinear Distributed Fusion Estimation Problem
Disturbance noises are always bounded in a practical system, while fusion
estimation is to best utilize multiple sensor data containing noises for the
purpose of estimating a quantity--a parameter or process. However, few results
are focused on the information fusion estimation problem under bounded noises.
In this paper, we study the distributed fusion estimation problem for linear
time-varying systems and nonlinear systems with bounded noises, where the
addressed noises do not provide any statistical information, and are unknown
but bounded. When considering linear time-varying fusion systems with bounded
noises, a new local Kalman-like estimator is designed such that the square
error of the estimator is bounded as time goes to . A novel
constructive method is proposed to find an upper bound of fusion estimation
error, then a convex optimization problem on the design of an optimal weighting
fusion criterion is established in terms of linear matrix inequalities, which
can be solved by standard software packages. Furthermore, according to the
design method of linear time-varying fusion systems, each local nonlinear
estimator is derived for nonlinear systems with bounded noises by using Taylor
series expansion, and a corresponding distributed fusion criterion is obtained
by solving a convex optimization problem. Finally, target tracking system and
localization of a mobile robot are given to show the advantages and
effectiveness of the proposed methods.Comment: 9 pages, 3 figure
Variance-constrained control for uncertain stochastic systems with missing measurements
Copyright [2005] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, we are concerned with a new control problem for uncertain discrete-time stochastic systems with missing measurements. The parameter uncertainties are allowed to be norm-bounded and enter into the state matrix. The system measurements may be unavailable (i.e., missing data) at any sample time, and the probability of the occurrence of missing data is assumed to be known. The purpose of this problem is to design an output feedback controller such that, for all admissible parameter uncertainties and all possible incomplete observations, the system state of the closed-loop system is mean square bounded, and the steady-state variance of each state is not more than the individual prescribed upper bound. We show that the addressed problem can be solved by means of algebraic matrix inequalities. The explicit expression of the desired robust controllers is derived in terms of some free parameters, which may be exploited to achieve further performance requirements. An illustrative numerical example is provided to demonstrate the usefulness and flexibility of the proposed design approach
Evolution of cooperation in multilevel public goods games with community structures
In a community-structured population, public goods games (PGG) occur both
within and between communities. Such type of PGG is referred as multilevel
public goods games (MPGG). We propose a minimalist evolutionary model of the
MPGG and analytically study the evolution of cooperation. We demonstrate that
in the case of sufficiently large community size and community number, if the
imitation strength within community is weak, i.e., an individual imitates
another one in the same community almost randomly, cooperation as well as
punishment are more abundant than defection in the long run; if the imitation
strength between communities is strong, i.e., the more successful strategy in
two individuals from distinct communities is always imitated, cooperation and
punishment are also more abundant. However, when both of the two imitation
intensities are strong, defection becomes the most abundant strategy in the
population. Our model provides insight into the investigation of the
large-scale cooperation in public social dilemma among contemporary
communities.Comment: 6 pages, 4 figures, Accepted by EP
Estimates on Learning Rates for Multi-Penalty Distribution Regression
This paper is concerned with functional learning by utilizing two-stage
sampled distribution regression. We study a multi-penalty regularization
algorithm for distribution regression under the framework of learning theory.
The algorithm aims at regressing to real valued outputs from probability
measures. The theoretical analysis on distribution regression is far from
maturity and quite challenging, since only second stage samples are observable
in practical setting. In the algorithm, to transform information from samples,
we embed the distributions to a reproducing kernel Hilbert space
associated with Mercer kernel via mean embedding technique.
The main contribution of the paper is to present a novel multi-penalty
regularization algorithm to capture more features of distribution regression
and derive optimal learning rates for the algorithm. The work also derives
learning rates for distribution regression in the nonstandard setting
, which is not explored in existing literature.
Moreover, we propose a distribution regression-based distributed learning
algorithm to face large-scale data or information challenge. The optimal
learning rates are derived for the distributed learning algorithm. By providing
new algorithms and showing their learning rates, we improve the existing work
in different aspects in the literature
Robust finite-horizon filtering for stochastic systems with missing measurements
Copyright [2005] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this letter, we consider the robust finite-horizon filtering problem for a class of discrete time-varying systems with missing measurements and norm-bounded parameter uncertainties. The missing measurements are described by a binary switching sequence satisfying a conditional probability distribution. An upper bound for the state estimation error variance is first derived for all possible missing observations and all admissible parameter uncertainties. Then, a robust filter is designed, guaranteeing that the variance of the state estimation error is not more than the prescribed upper bound. It is shown that the desired filter can be obtained in terms of the solutions to two discrete Riccati difference equations, which are of a form suitable for recursive computation in online applications. A simulation example is presented to show the effectiveness of the proposed approach by comparing to the traditional Kalman filtering method
- …