147 research outputs found
Improved digital watermarking schemes using DCT and neural techniques
The present thesis investigates the copyright protection by utilizing the digital watermarking of images. The basic spatial domain technique DCT based frequency based technique were studied and simulated. Most recently used Neural Network based DCT Scheme is also studied and simulated. The earlier used Back Propagation Network (BPN) is replaced by Radial Basis Function Neural Network (RBFNN) in the proposed scheme to improve the robustness and overall computation requirements. Since RBFNN requires less number of weights during training, the memory requirement is also less as compared to BPN.
Keywords : Digital Watermarking, Back Propagation Network (BPN), Hash Function, Radial Basis Function Neural Network (RBFNN), and Discrete Cosine Transform (DCT). Watermarking can be considered as a special technique of steganography where one message is embedded in another and the two messages are related to each other in some way. The most common examples of watermarking are the presence of specific patterns in currency notes, which are visible only when the note is held to light, and logos in the background of printed text documents. The watermarking techniques prevent forgery and unauthorized replication of physical objects. In digital watermarking a low-energy signal is imperceptibly embedded in another signal. The low-energy signal is called the watermark and it depicts some metadata, like security or rights information about the main signal. The main signal in which the watermark is embedded is referred to as the cover signal since it covers the watermark. In recent years the ease with which perfect copies can be made has lead large-scale unauthorized copying, which is a great concern to the music, film, book and software publishing industries. Because of this concern over copyright issues, a number of technologies are being developed to protect against illegal copying. One of these technologies is the use of digital watermarks. Watermarking embeds an ownership signal directly into the data. In this way, the signal is always present with the data.
Analysis
Digital watermarking techniques were implemented in the frequency domain using Discrete Cosine Transform (DCT). The DCT transforms a signal or image from the spatial domain to the frequency domain. Also digital watermarking was implemented using Neural Networks such as:
1. Back Propagation Network (BPN)
2. Radial Basis Function Neural Network (RBFNN)
Digital watermarking using RBFNN was proposed which improves both security and robustness of the image. It is based on the Cover’s theorem which states that nonlinearly separable patterns can be separated linearly if the pattern is cast nonlinearly into a higher dimensional space. RBFNN contains an input layer, a hidden layer with nonlinear activation functions and an output layer with linear activation functions.
Results
The following results were obtained:-
1. The DCT based method is more robust than that of the LSB based method in the tested possible attacks. DCT method can achieve the following two goals: The first is that illegal users do not know the location of the embedded watermark in the image. The second is that a legal user can retrieve the embedded watermark from the altered image.
2. The RBFNN network is easier to train than the BPN network. The main advantage of the RBFNN over the BPN is the reduced computational cost in the training stage, while maintaining a good performance of approximation. Also less number of weights are required to be stored or less memory requirements for the verification and testing in a later stage
Plasma Pharmacokinetics and Tissue Disposition of Novel Dextran- Methylprednisolone Conjugates with Peptide Linkers in Rats
The plasma and tissue disposition of two novel dextran prodrugs of methylprednisolone (MP) containing one (DMP-1) or five (DMP-5) amino acids as linkers were studied in rats. Single 5-mg/kg doses (MP equivalent) of each prodrug or MP were administered intravenously, and blood and tissue samples were collected. Prodrug and drug concentrations were quantitated using HPLC, and noncompartmental pharmacokinetic parameters were estimated. Whereas conjugation of MP with dextran in both prodrugs substantially decreased the clearance of the drug by ∼200-fold, the accumulations of the drug in the liver, spleen, and kidneys were significantly increased by conjugation. However, the extent of accumulation of DMP-1 in these tissues was substantially greater than that for DMP-5. Substantial amounts of MP were regenerated from both prodrugs in the liver and spleen, with the rate of release from DMP-5 being twice as fast as that from DMP-1. However, the AUCs of MP regenerated from DMP-1 in the liver and spleen were substantially higher than those after DMP-5. In contrast, in the kidneys, the AUC of MP regenerated from DMP-5 was higher than that after DMP-1 administration. These data suggest that DMP-1 may be more suitable than DMP-5 for targeting immunosuppression to the liver and spleen
Synthesis, antiviral and contraceptive activities of nucleoside–sodium cellulose sulfate acetate and succinate conjugates
Chemical conjugates between sodium cellulose sulfate (CS), displaying contraceptive and HIV-entry inhibiting properties, and nucleoside reverse transcriptase inhibitors (NRTIs) (3′-azido-2′,3′-dideoxythymidine (AZT), 3′-fluoro-2′,3′-dideoxythymidine (FLT), or 2′,3′-dideoxy-3′-thiacytidine (3TC)) were designed to simultaneously provide contraceptive and anti-HIV activity. Two linkers, acetate and succinate, were used to conjugate the nucleoside analogs with CS. The conjugates containing cellulose sulfate-acetate (CSA) (e.g., AZT–CSA and FLT–CSA) were found to be more potent than CS and other conjugates (e.g., AZT–succinate–CS, and FLT–succinate–CS). The presence of both sulfate and the acetate groups on cellulose were critical for generating maximum anti-HIV activity. In addition to showing equal potency against wild-type and multidrug resistant HIV-1, the AZT–CSA conjugate displayed significant contraceptive activity in an animal model, providing the initial proof-of-concept for the design and synthesis of dual-activity compounds based on these combinations.
[Refer to PDF for graphical abstract
Hepatic immunosuppressive effects of systemically administered novel dextran–methylprednisolone prodrugs with peptide linkers in rats
The hepatic immunosuppressive activities of two novel dextran prodrugs of methylprednisolone (MP) containing one (DMP1) or five (DMP5) amino acids as linkers were studied in rats. At various times (0–2 weeks) after intravenous administration of single 5 mg/kg (MP equivalent) doses of each prodrug or MP succinate (MPS), livers were isolated and immunologically stimulated ex vivo with lipopolysaccharide. The concentrations of tumor necrosis factor (TNF)‐α in the outlet perfusate were then quantitated to assess immune response. Additionally, the concentrations of DMP1, DMP5, and/or MP were measured in the liver. MPS, DMP5, or DMP1 injections caused a maximum of 48.9%, 63.5%, or 85.7% decrease in the TNF‐α secretion into the perfusate, with the time above the 50% inhibitory effect being \u3c5, \u3c24, or 120 h, respectively. Additionally, the area under the effect–time curve for DMP1 was 11‐fold or fourfold higher than that after the administration of MPS or DMP5, respectively. Relatively high concentrations of DMP1 were present in the liver even at the last sampling time of 2 weeks. These data suggest that a single intravenous dose of DMP1 produces an intense and sustained immunosuppression in the liver for a relatively long time, which may be useful in liver transplantation
Synthesis and in Vitro Characterization of Novel Dextran–Methylprednisolone Conjugates with Peptide Linkers: Effects of Linker Length on Hydrolytic and Enzymatic Release of Methylprednisolone and its Peptidyl Intermediates
To control the rate of release of methylprednisolone (MP) in lysosomes, new dextran–MP conjugates with peptide linkers were synthesized and characterized. Methylprednisolone succinate (MPS) was attached to dextran 25 kDa using linkers with 1–5 Gly residues. The release characteristics of the conjugates in pH 4.0 and 7.4 buffers, blood, liver lysosomes, and various lysosomal proteinases were determined using a size-exclusion and/or a newly developed reversed-phase HPLC method capable of simultaneous quantitation of MP, MPS, and all five possible MPS-peptidyl intermediates. We synthesized conjugates with ≥90% purity and 6.9–9.5% (w/w) degree of MP substitution. The conjugates were stable at pH 4.0, but released MP and intact MPS-peptidyl intermediates in the pH 7.4 buffer and rat blood, with faster degradation rates for longer linkers. Rat lysosomal fractions degraded the conjugates to MP and all the possible intermediates also at a rate directly proportional to the length of the peptide. Whereas the degradation of the conjugates by cysteine peptidases (papain or cathepsin B) was relatively substantial, no degradation was observed in the presence of aspartic (cathepsin D) or serine (trypsin) proteinases, which do not cleave peptide bonds with Gly. These newly developed dextran conjugates of MP show promise for controlled delivery of MP in lysosomes
Synthesis and anti-HIV activities of symmetrical dicarboxylate esters of dinucleoside reverse transcriptase inhibitors
Three nucleoside analogues, 3′-fluoro-2′,3′-dideoxythymidine (FLT), 3′-azido-2′,3′-dideoxythymidine (AZT), and 2′,3′-dideoxy-3′-thiacytidine (3TC) were conjugated with three different dicarboxylic acids to afford the long chain dicarboxylate esters of nucleosides. In general, dinucleoside ester conjugates of FLT and 3TC with long chain dicarboxylic acids exhibited higher anti-HIV activity than their parent nucleosides. Dodecanoate and tetradecanoate dinucleoside ester derivatives of FLT were found to be the most potent compounds with EC50 values of 0.8–1.0 nM and 3–4 nM against HIV-1US/92/727 and HIV-1IIIB cells, respectively. The anti-HIV activity of the 3TC conjugates containing long chain dicarboxylate diester (EC50 = 3–60 nM) was improved by 1.5–66 fold when compared to 3TC (EC50 = 90–200 nM). This study reveals that the symmetrical ester conjugation of dicarboxylic acids with a number of nucleosides results in conjugates with improved anti-HIV profile.
[Refer to PDF for graphical abstract
An Enigma of Lower Airway Mucormycosis Infection
Saprophytic zygomycetes (e.g., Mucor, Rhizopus) are occasionally found in tissues of compromised hosts, in persons suffering from diabetes mellitus (particularly acidosis), extensive burns, leukemia, lymphoma or other chronic illness or immunosuppression. Rhizopus species, Mucor species and other zygomycetes invade the walls of blood vessels, producing thrombosis. This occurs commonly in paranasal sinus, the lungs and result in ischemic necrosis of surrounding tissue with an intense polymorphonuclear infiltrate. The organisms are rarely cultured during life but are seen in histologic preparations of tissues as broad nonseptate, irregular hyphae in thrombosed vessels or sinuses with surrounding leukocyte and giant cell response
Synthesis of nucleoside 5′-\u3cem\u3eO\u3c/em\u3e-α,β-methylene-β-triphosphates and evaluation of their potency towards inhibition of HIV-1 reverse transcriptase
A polymer-bound α,β-methylene-β-triphosphitylating reagent was synthesized and subjected to reactions with unprotected nucleosides, followed by oxidation, deprotection of cyanoethoxy groups, and acidic cleavage to afford nucleoside 5′-O-α,β-methylene-β-triphosphates. Among all the compounds, cytidine 5′-O-α,β-methylene-β-triphosphate inhibited RNase H activity of HIV-1 reverse transcriptase with a Ki value of 225 μM
- …