854 research outputs found

    Electroweak and QCD corrections to top-pair hadroproduction in association with heavy bosons

    Get PDF
    We compute the contribution of order αS2α2\alpha_S^2\alpha^2 to the cross section of a top-antitop pair in association with at least one heavy Standard Model boson -- ZZ, W±W^\pm, and Higgs -- by including all effects of QCD, QED, and weak origin and by working in the automated MadGraph5_aMC@NLO framework. This next-to-leading order contribution is then combined with that of order αS3α\alpha_S^3\alpha, and with the two dominant lowest-order ones, αS2α\alpha_S^2\alpha and αSα2\alpha_S\alpha^2, to obtain phenomenological results relevant to a 8, 13, and 100~TeV pppp collider.Comment: 27 pages, 8 figure

    Weak corrections to Higgs hadroproduction in association with a top-quark pair

    Get PDF
    We present the calculation of the next-to-leading contribution of order αS2α2\alpha_S^2\alpha^2 to the production of a Standard Model Higgs boson in association with a top-quark pair at hadron colliders. All effects of weak and QCD origin are included, whereas those of QED origin are ignored. We work in the MadGraph5_aMC@NLO framework, and discuss sample phenomenological applications at a 8, 13, and 100 TeV pppp collider, including the effects of the dominant next-to-leading QCD corrections of order αS3α\alpha_S^3\alpha.Comment: 29 pages, 38 figure

    Higgs production in association with bottom quarks

    Get PDF
    We study the production of a Higgs boson in association with bottom quarks in hadronic collisions, and present phenomenological predictions relevant to the 13 TeV LHC. Our results are accurate to the next-to-leading order in QCD, and matched to parton showers through the MC@NLO method; thus, they are fully differential and based on unweighted events, which we shower by using both Herwig++ and Pythia8. We perform the computation in both the four-flavour and the five-flavour schemes, whose results we compare extensively at the level of exclusive observables. In the case of the Higgs transverse momentum, we also consider the analytically-resummed cross section up to the NNLO+NNLL accuracy. In addition, we analyse at O(αS3){\cal O}(\alpha_S^3) the effects of the interference between the bbˉHb\bar{b}H and gluon-fusion production modes.Comment: 33 pages, 17 figure

    The automation of next-to-leading order electroweak calculations

    Full text link
    We present the key features relevant to the automated computation of all the leading- and next-to-leading order contributions to short-distance cross sections in a mixed-coupling expansion, with special emphasis on the first subleading NLO term in the QCD+EW scenario, commonly referred to as NLO EW corrections. We discuss, in particular, the FKS subtraction in the context of a mixed-coupling expansion; the extension of the FKS subtraction to processes that include final-state tagged particles, defined by means of fragmentation functions; and some properties of the complex mass scheme. We combine the present paper with the release of a new version of MadGraph5_aMC@NLO, capable of dealing with mixed-coupling expansions. We use the code to obtain illustrative inclusive and differential results for the 13-TeV LHC.Comment: 121 pages, 16 figure

    Higgs pair production at the LHC with NLO and parton-shower effects

    Get PDF
    We present predictions for the SM-Higgs-pair production channels of relevance at the LHC: gluon-gluon fusion, VBF, and top-pair, W, Z and single-top associated production. All these results are at the NLO accuracy in QCD, and matched to parton showers by means of the MC@NLO method; hence, they are fully differential. With the exception of the gluon-gluon fusion process, for which a special treatment is needed in order to improve upon the infinite-top-mass limit, our predictions are obtained in a fully automatic way within the publicly available MadGraph5_aMC@NLO framework. We show that for all channels in general, and for gluon-gluon fusion and top-pair associated production in particular, NLO corrections reduce the theoretical uncertainties, and are needed in order to arrive at reliable predictions for total rates as well as for distributions.Comment: 11 pages, 7 figures, version accepted for publication on PL

    The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations

    Get PDF
    We discuss the theoretical bases that underpin the automation of the computations of tree-level and next-to-leading order cross sections, of their matching to parton shower simulations, and of the merging of matched samples that differ by light-parton multiplicities. We present a computer program, MadGraph5_aMC@NLO, capable of handling all these computations -- parton-level fixed order, shower-matched, merged -- in a unified framework whose defining features are flexibility, high level of parallelisation, and human intervention limited to input physics quantities. We demonstrate the potential of the program by presenting selected phenomenological applications relevant to the LHC and to a 1-TeV e+e−e^+e^- collider. While next-to-leading order results are restricted to QCD corrections to SM processes in the first public version, we show that from the user viewpoint no changes have to be expected in the case of corrections due to any given renormalisable Lagrangian, and that the implementation of these are well under way.Comment: 158 pages, 27 figures; a few references have been adde

    High-resolution abundance analysis of red giants in the globular cluster NGC 6522

    Get PDF
    The [Sr/Ba] and [Y/Ba] scatter observed in some galactic halo stars that are very metal-poor stars and in a few individual stars of the oldest known Milky Way globular cluster NGC 6522,have been interpreted as evidence of early enrichment by massive fast-rotating stars (spinstars). Because NGC 6522 is a bulge globular cluster, the suggestion was that not only the very-metal poor halo stars, but also bulge stars at [Fe/H]~-1 could be used as probes of the stellar nucleosynthesis signatures from the earlier generations of massive stars, but at much higher metallicity. For the bulge the suggestions were based on early spectra available for stars in NGC 6522, with a medium resolution of R~22,000 and a moderate signal-to-noise ratio. The main purpose of this study is to re-analyse the NGC 6522 stars previously reported using new high-resolution (R~45,000) and high signal-to-noise spectra (S/N>100). We aim at re-deriving their stellar parameters and elemental ratios, in particular the abundances of the neutron-capture s-process-dominated elements such as Sr, Y, Zr, La, and Ba, and of the r-element Eu. High-resolution spectra of four giants belonging to the bulge globular cluster NGC 6522 were obtained at the 8m VLT UT2-Kueyen telescope with the UVES spectrograph in FLAMES-UVESconfiguration. The spectroscopic parameters were derived based on the excitation and ionization equilibrium of \ion{Fe}{I} and \ion{Fe}{II}. Our analysis confirms a metallicity [Fe/H] = -0.95+-0.15 for NGC 6522, and the overabundance of the studied stars in Eu (with +~0.2 < [Eu/Fe] < +~0.4) and alpha-elements O and Mg. The neutron-capture s-element-dominated Sr, Y, Zr, Ba, La now show less pronounced variations from star to star. Enhancements are in the range 0.0 < [Sr/Fe] < +0.4, +0.23 < [Y/Fe] < +0.43, 0.0 < [Zr/Fe] < +0.4, 0.0 < [La/Fe] < +0.35,and 0.05 < [Ba/Fe] < +0.55.Comment: date of acceptation: 31/07/2014, in press, 24 pages, 19 figures,Astronomy & Astrophysics, 201

    Scalar and pseudoscalar Higgs production in association with a top-antitop pair

    Get PDF
    We present the calculation of scalar and pseudoscalar Higgs production in association with a top-antitop pair to the next-to-leading order (NLO) accuracy in QCD, interfaced with parton showers according to the MC@NLO formalism. We apply our results to the cases of light and very light Higgs boson production at the LHC, giving results for total rates as well as for sample differential distributions, relevant to the Higgs, to the top quarks, and to their decay products. This work constitutes the first phenomenological application of aMC@NLO, a fully automated approach to complete event generation at NLO in QCD.Comment: 15 pages, 8 figures, published version. (2 references added, improved description of the decay of the top and Higgs bosons

    Next-to-leading-order QCD Corrections to Higgs Production in association with a Jet

    Full text link
    We compute the next-to-leading-order (NLO) QCD corrections to the Higgs pT distribution in Higgs production in association with a jet via gluon fusion at the LHC, with exact dependence on the mass of the quark circulating in the heavy-quark loops. The NLO corrections are presented including the top-quark mass, and for the first time, the bottom-quark mass as well. Further, besides the on-shell mass scheme, we consider for the first time a running mass renormalisation scheme. The computation is based on amplitudes which are valid for arbitrary heavy-quark masses.Comment: LaTeX, 7 pages, 5 figure

    Numerical evaluation of one-loop QCD amplitudes

    Full text link
    We present the publicly available program NGluon allowing the numerical evaluation of primitive amplitudes at one-loop order in massless QCD. The program allows the computation of one-loop amplitudes for an arbitrary number of gluons. The focus of the present article is the extension to one-loop amplitudes including an arbitrary number of massless quark pairs. We discuss in detail the algorithmic differences to the pure gluonic case and present cross checks to validate our implementation. The numerical accuracy is investigated in detail.Comment: Talk given at ACAT 2011 conference in London, 5-9 Septembe
    • 

    corecore