58 research outputs found

    Prediction of Potency of Protease Inhibitors Using Free Energy Simulations with Polarizable Quantum Mechanics-Based Ligand Charges and a Hybrid Water Model

    No full text
    Reliable and robust prediction of the binding affinity for drug molecules continues to be a daunting challenge. We simulated the binding interactions and free energy of binding of nine protease inhibitors (PIs) with wild-type and various mutant proteases by performing GBSA simulations in which each PI’s partial charge was determined by quantum mechanics (QM) and the partial charge accounts for the polarization induced by the protease environment. We employed a hybrid solvation model that retains selected explicit water molecules in the protein with surface-generalized Born (SGB) implicit solvent. We examined the correlation of the free energy with the antiviral potency of PIs with regard to amino acid substitutions in protease. The GBSA free energy thus simulated showed strong correlations (r > 0.75) with antiviral IC50 values of PIs when amino acid substitutions were present in the protease active site. We also simulated the binding free energy of PIs with P2-bis-tetrahydrofuranylurethane (bis-THF) or related cores, utilizing a bis-THF-containing protease crystal structure as a template. The free energy showed a strong correlation (r = 0.93) with experimentally determined anti-HIV-1 potency. The present data suggest that the presence of selected explicit water in protein and protein polarization-induced quantum charges for the inhibitor, compared to lack of explicit water and a static force-field-based charge model, can serve as an improved lead optimization tool and warrants further exploration

    Design and Synthesis of Stereochemically Defined Novel Spirocyclic P2-Ligands for HIV-1 Protease Inhibitors

    No full text
    The synthesis of a series of stereochemically defined spirocyclic compounds and their use as novel P2-ligands for HIV-1 protease inhibitors are described. The bicyclic core of the ligands was synthesized by an efficient nBu3SnH-promoted radical cyclization of a 1,6-enyne followed by oxidative cleavage. Structure-based design, synthesis of ligands, and biological evaluations of the resulting inhibitors are reported

    Design and Synthesis of Stereochemically Defined Novel Spirocyclic P2-Ligands for HIV-1 Protease Inhibitors

    No full text
    The synthesis of a series of stereochemically defined spirocyclic compounds and their use as novel P2-ligands for HIV-1 protease inhibitors are described. The bicyclic core of the ligands was synthesized by an efficient nBu3SnH-promoted radical cyclization of a 1,6-enyne followed by oxidative cleavage. Structure-based design, synthesis of ligands, and biological evaluations of the resulting inhibitors are reported

    Pharmacokinetic properties of a novel inosine analog, 4′-cyano-2′-deoxyinosine, after oral administration in rats

    No full text
    <div><p>4′-cyano-2′-deoxyinosine (SK14-061a), a novel nucleoside analog based on inosine, has antiviral activity against the human immunodeficiency virus type 1 that has the ability to acquire resistance against many types of reverse transcriptase inhibitors based on nucleosides. The aim of this study was to investigate the pharmacokinetics studies after its oral administration to rats. For this purpose, we first developed and validated an analytical method for quantitatively determining SK14-061a levels in biological samples by a UPLC system interfaced with a TOF-MS system. A rapid, simple and selective method for the quantification of SK14-061a in biological samples was established using liquid chromatography mass spectrometry (LC-MS) with solid phase extraction. The pharmacokinetic properties of SK14-061a in rats after oral administration were then evaluated using this LC-MS method. SK14-061a was found to be relatively highly bioavailable, is rapidly absorbed from the intestinal tract, and is then mainly distributed to the liver and then ultimately excreted via the urine in an unchanged form. Furthermore, the simultaneous administration of SK14-061a with the nucleoside analog, entecavir, led to a significant alteration in the pharmacokinetics of SK14-061a. These results suggest that the SK14-061a has favorable pharmacokinetic properties with a high bioavailability with the potential for use in oral pharmaceutical formulations, but drug-drug interactions should also be considered.</p></div

    Table_2_Combination of a Latency-Reversing Agent With a Smac Mimetic Minimizes Secondary HIV-1 Infection in vitro.pdf

    No full text
    Latency-reversing agents (LRAs) are considered a potential tool to cure human immunodeficiency virus type 1 (HIV-1) infection, but when they are taken alone, virus production by reactivated cells and subsequent infection will occur. Hence, it is crucial to simultaneously take appropriate measures to prevent such secondary HIV-1 infection. In this regard, a strategy to minimize the production of infectious viruses from LRA-reactivated cells is worth pursuing. Here, we focused on a second mitochondria-derived activator of caspases (Smac) mimetic, birinapant, to induce apoptosis in latent HIV-1-infected cells. When birinapant was administered alone, it only slightly increased the expression of caspase-3. However, in combination with an LRA (e.g., PEP005), it strongly induced the expression of caspase-3 followed by enhanced apoptosis. Importantly, the combination eliminated reactivated cells and drastically reduced HIV-1 production. Finally, we found that birinapant decreased the mRNA expression of HIV-1 that was induced by PEP005 in the primary CD4+ T-cells from HIV-1-carrying patients as well. These results suggest that the combination of an LRA and an “apoptosis-inducing” agent, such as a Smac mimetic, is a possible treatment option to decrease HIV-1 reservoirs without the occurrence of HIV-1 production by reactivated cells.</p

    Time course for the plasma concentration of SK14-061a after oral administration at a dose of 1 mg/kg in rats.

    No full text
    Venous blood samples were collected at 15 min, 45 min, 90 min, 3, 4.5, 6 and 9 hr after oral administration. The SK14-061a concentrations in plasma were measured by LC-MS combined with the SPE method. The values are the mean ± SD. (n = 4).</p

    Table_1_Combination of a Latency-Reversing Agent With a Smac Mimetic Minimizes Secondary HIV-1 Infection in vitro.pdf

    No full text
    Latency-reversing agents (LRAs) are considered a potential tool to cure human immunodeficiency virus type 1 (HIV-1) infection, but when they are taken alone, virus production by reactivated cells and subsequent infection will occur. Hence, it is crucial to simultaneously take appropriate measures to prevent such secondary HIV-1 infection. In this regard, a strategy to minimize the production of infectious viruses from LRA-reactivated cells is worth pursuing. Here, we focused on a second mitochondria-derived activator of caspases (Smac) mimetic, birinapant, to induce apoptosis in latent HIV-1-infected cells. When birinapant was administered alone, it only slightly increased the expression of caspase-3. However, in combination with an LRA (e.g., PEP005), it strongly induced the expression of caspase-3 followed by enhanced apoptosis. Importantly, the combination eliminated reactivated cells and drastically reduced HIV-1 production. Finally, we found that birinapant decreased the mRNA expression of HIV-1 that was induced by PEP005 in the primary CD4+ T-cells from HIV-1-carrying patients as well. These results suggest that the combination of an LRA and an “apoptosis-inducing” agent, such as a Smac mimetic, is a possible treatment option to decrease HIV-1 reservoirs without the occurrence of HIV-1 production by reactivated cells.</p

    Indium-Mediated Atom-Transfer and Reductive Radical Cyclizations of Iodoalkynes:  Synthesis and Biological Evaluation of HIV-Protease Inhibitors

    No full text
    Novel indium-mediated radical cyclization reactions of aliphatic iodoalkynes have been studied. Treatment of iodoalkynes with a catalytic amount of In (0.1 equiv) and I2 (0.05 equiv) promotes atom-transfer 5-exo cyclization to give five-membered alkenyl iodides. In contrast, reaction with In (2 equiv) and I2 (1 equiv) yields reductive 5-exo cyclization products via the same 5-exo cyclization. Both processes are most likely initiated by low-valent indium species. To demonstrate versatility of these reactions, optically active HIV protease inhibitors were synthesized by this reductive cyclization method. Among them, several products, which contain a hydroxyethylamine dipeptide isostere as a transition state-mimicking substructure, proved to possess potent activity (IC50 = 5−39 nM) against a wide spectrum of HIV strains, including multidrug-resistant variants

    Data_Sheet_2_Combination of a Latency-Reversing Agent With a Smac Mimetic Minimizes Secondary HIV-1 Infection in vitro.PDF

    No full text
    Latency-reversing agents (LRAs) are considered a potential tool to cure human immunodeficiency virus type 1 (HIV-1) infection, but when they are taken alone, virus production by reactivated cells and subsequent infection will occur. Hence, it is crucial to simultaneously take appropriate measures to prevent such secondary HIV-1 infection. In this regard, a strategy to minimize the production of infectious viruses from LRA-reactivated cells is worth pursuing. Here, we focused on a second mitochondria-derived activator of caspases (Smac) mimetic, birinapant, to induce apoptosis in latent HIV-1-infected cells. When birinapant was administered alone, it only slightly increased the expression of caspase-3. However, in combination with an LRA (e.g., PEP005), it strongly induced the expression of caspase-3 followed by enhanced apoptosis. Importantly, the combination eliminated reactivated cells and drastically reduced HIV-1 production. Finally, we found that birinapant decreased the mRNA expression of HIV-1 that was induced by PEP005 in the primary CD4+ T-cells from HIV-1-carrying patients as well. These results suggest that the combination of an LRA and an “apoptosis-inducing” agent, such as a Smac mimetic, is a possible treatment option to decrease HIV-1 reservoirs without the occurrence of HIV-1 production by reactivated cells.</p
    corecore