20 research outputs found

    Multi Shell Model for Majumdar-Papapetrau Spacetimes

    Get PDF
    Exact solutions to static and non-static Einstein-Maxwell equations in the presence of extremely charged dust embedded on thin shells are constructed. Singularities of multi-black hole Majumdar-Papapetrou and Kastor-Trashen solutions are removed by placing the matter on thin shells. Double spherical thin shell solution is given as an illustration and the matter densitiies on the shells are derived.Comment: To appear in Physical Review

    First principles study of electronic and structural properties of CuO

    Full text link
    We investigate the electronic and structural properties of CuO, which shows significant deviations from the trends obeyed by other transition-metal monoxides. Using an extended Hubbard corrective functional, we uncover an orbitally ordered insulating ground state for the cubic phase of this material, which was expected but never found before. This insulating state results from a fine balance between the tendency of Cu to complete its d-shell and Hund's rule magnetism. Starting from the ground state for the cubic phase, we also study tetragonal distortions of the unit cell (recently reported in experiments), the consequent electronic reorganizations and identify the equilibrium structure. Our calculations reveal an unexpected richness of possible magnetic and orbital orders, relatively close in energy to the ground state, whose stability depends on the sign and entity of distortion.Comment: 9 pages, 9 figure

    Scalar-Scalar, Scalar-Tensor, and Tensor-Tensor Correlators from Anisotropic Inflation

    Full text link
    We compute the phenomenological signatures of a model (Watanabe et al' 09) of anisotropic inflation driven by a scalar and a vector field. The action for the vector is U(1) invariant, and the model is free of ghost instabilities. A suitable coupling of the scalar to the kinetic term of the vector allows for a slow roll evolution of the vector vev, and hence for a prolonged anisotropic expansion; this provides a counter example to the cosmic no hair conjecture. We compute the nonvanishing two point correlation functions between physical modes of the system, and express them in terms of power spectra with angular dependence. The anisotropy parameter g_* for the scalar-scalar spectrum (defined as in the Ackerman et al '07 parametrization) turns out to be negative in the simplest realization of the model, which, therefore, cannot account for the angular dependence emerged in some analyses of the WMAP data. A g_* of order -0.1 is achieved when the energy of the vector is about 6-7 orders of magnitude smaller than that of the scalar during inflation. For such values of the parameters, the scalar-tensor correlation (which is in principle a distinctive signature of anisotropic spaces) is smaller than the tensor-tensor correlation

    Searching for high magnetization density in bulk Fe: the new metastable Fe6_6 phase

    Full text link
    We report the discovery of a new allotrope of iron by first principles calculations. This phase has Pmn21Pmn2_1 symmetry, a six-atom unit cell (hence the name Fe6_6), and the highest magnetization density (Ms_s) among all known crystalline phases of iron. Obtained from the structural optimizations of the Fe3_3C-cementite crystal upon carbon removal, Pmn21Pmn2_1 Fe6_6 is shown to result from the stabilization of a ferromagnetic FCC phase, further strained along the Bain path. Although metastable from 0 to 50 GPa, the new phase is more stable, at low pressures, than the other well-known HCP and FCC allotropes and smoothly transforms into the FCC phase under compression. If stabilized to room temperature, e.g., by interstitial impurities, Fe6_{6} could become the basis material for high Ms_s rare-earth-free permanent magnets and high-impact applications such as, light-weight electric engine rotors or high-density recording media. The new phase could also be key to explain the enigmatic high Ms_s of Fe16_{16}N2_2, which is currently attracting an intense research activity.Comment: 7 pages, 7 figure

    Role of electronic localization in the phosphorescence of iridium sensitizing dyes

    Full text link
    In this work we present a systematic study of three representative iridium dyes, namely, Ir(ppy)3, FIrpic and PQIr, which are commonly used as sensitizers in organic optoelectronic devices. We show that electronic correlations play a crucial role in determining the excited-state energies in these systems, due to localization of electrons on Ir d orbitals. Electronic localization is captured by employing hybrid functionals within time-dependent density-functional theory (TDDFT) and with Hubbard-model corrections within the delta-SCF approach. The performance of both methods are studied comparatively and shown to be in good agreement with experiment. The Hubbard-corrected functionals provide further insight into the localization of electrons and on the charge-transfer character of excited-states. The gained insight allows us to comment on envisioned functionalization strategies to improve the performance of these systems. Complementary discussions on the delta-SCF method are also presented in order to fill some of the gaps in the literature.Comment: 15 pages, 14 figure

    Instability of the ACW model, and problems with massive vectors during inflation

    Full text link
    We prove that the anisotropic inflationary background of the Ackerman-Carroll-Wise model, characterized by a fixed-norm vector field, is unstable. We found the instability by explicitly solving the linearized equations for the most general set of perturbations around this background, and by noticing that the solutions diverge close to horizon crossing. This happens because one perturbation becomes a ghost at that moment. A simplified computation, with only the perturbations of the vector field included, shows the same instability, clarifying the origin of the problem. We then discuss several other models, with a particular emphasis on the case of a nonminimal coupling to the curvature, in which vector fields are used either to support an anisotropic expansion, or to generate cosmological perturbations on an isotropic background. In many cases, the mass term of the vector needs to have the ``wrong'' sign; we show that, as a consequence, the longitudinal vector mode is a ghost (a field with negative kinetic term, and negative energy; not simply a tachyon). We comment on problems that arise at the quantum level. In particular, the presence of a ghost can be a serious difficulty for the UV completion that such models require in the sub-horizon regime.Comment: 22 pages, 4 figure