23 research outputs found
Coupling between pore formation and phase separation in charged lipid membranes
We investigated the effect of charge on the membrane morphology of giant
unilamellar vesicles (GUVs) composed of various mixtures containing charged
lipids. We observed the membrane morphologies by fluorescent and confocal laser
microscopy in lipid mixtures consisting of a neutral unsaturated lipid
[dioleoylphosphatidylcholine (DOPC)], a neutral saturated lipid
[dipalmitoylphosphatidylcholine (DPPC)], a charged unsaturated lipid
[dioleoylphosphatidylglycerol (DOPG)], a charged saturated
lipid [dipalmitoylphosphatidylglycerol (DPPG)], and
cholesterol (Chol). In binary mixtures of neutral DOPC/DPPC and charged
DOPC/DPPG, spherical vesicles were formed. On the other
hand, pore formation was often observed with GUVs consisting of
DOPG and DPPC. In a DPPC/DPPG/Chol
ternary mixture, pore-formed vesicles were also frequently observed. The
percentage of pore-formed vesicles increased with the DPPG
concentration. Moreover, when the head group charges of charged lipids were
screened by the addition of salt, pore-formed vesicles were suppressed in both
the binary and ternary charged lipid mixtures. We discuss the mechanisms of
pore formation in charged lipid mixtures and the relationship between phase
separation and the membrane morphology. Finally, we reproduce the results seen
in experimental systems by using coarse-grained molecular dynamics simulations.Comment: 34 pages, 10 figure
Charge-induced phase separation in lipid membranes
The phase separation in lipid bilayers that include negatively charged lipids
is examined experimentally. We observed phase-separated structures and
determined the membrane miscibility temperatures in several binary and ternary
lipid mixtures of unsaturated neutral lipid, dioleoylphosphatidylcholine
(DOPC), saturated neutral lipid, dipalmitoylphosphatidylcholine (DPPC),
unsaturated charged lipid, dioleoylphosphatidylglycerol
(DOPG), saturated charged lipid,
dipalmitoylphosphatidylglycerol (DPPG), and cholesterol.
In binary mixtures of saturated and unsaturated charged lipids, the combination
of the charged head with the saturation of hydrocarbon tail is a dominant
factor for the stability of membrane phase separation.
DPPG enhances phase separation, while
DOPG suppresses it. Furthermore, the addition of
DPPG to a binary mixture of DPPC/cholesterol induces phase
separation between DPPG-rich and cholesterol-rich phases.
This indicates that cholesterol localization depends strongly on the electric
charge on the hydrophilic head group rather than on the ordering of the
hydrocarbon tails. Finally, when DPPG was added to a
neutral ternary system of DOPC/DPPC/Cholesterol (a conventional model of
membrane rafts), a three-phase coexistence was produced. We conclude by
discussing some qualitative features of the phase behaviour in charged
membranes using a free energy approach.Comment: 17 pages, 6 figure
Correcting the activity-specific component of heart rate variability using dynamic body acceleration under free-moving conditions
Heart rate variability (HRV) analysis is a widely used technique to assess sympatho-vagal regulation in response to various internal or external stressors. However, HRV measurements under free-moving conditions are highly susceptible to subjects’ physical activity levels because physical activity alters energy metabolism, which inevitably modulates the cardiorespiratory system and thereby changes the sympatho-vagal balance, regardless of stressors. Thus, researchers must simultaneously quantify the effect of physical activity on HRV to reliably assess sympatho-vagal balance under free-moving conditions. In the present study, dynamic body acceleration (DBA), which was developed in the field of animal ecology as a quantitative proxy for activity-specific energy expenditure, was used as a factor to correct for physical activity when evaluating HRV in freely moving subjects. Body acceleration and heart inter-beat intervals were simultaneously measured in cattle and sheep, and the vectorial DBA and HRV parameters were evaluated at 5-min intervals. Next, the effects of DBA on the HRV parameters were statistically analyzed. The heart rate (HR) and most of the HRV parameters were affected by DBA in both animal species, and the inclusion of the effect of DBA in the HRV analysis greatly influenced the frequency domain and nonlinear HRV parameters. By removing the effect of physical activity quantified using DBA, we could fairly compare the stress levels of animals with different physical activity levels under different management conditions. Moreover, we analyzed and compared the HRV parameters before and after correcting for the mean HR, with and without inclusion of DBA. The results were somewhat unexpected, as the effect of DBA was a highly significant source of HRV also in parameters corrected for mean HR. In conclusion, the inclusion of DBA as a physical activity index is a simple and useful method for correcting the activity-specific component of HRV under free-moving conditions