909 research outputs found
Rhenium elemental and isotopic variations at magmatic temperatures
Recent analytical advances in the measurement of rhenium (Re) isotope ratios allow its potential as a palaeoredox and chemical weathering proxy to be explored. However, a successful isotopic proxy must be grounded by an understanding of its composition and behaviour in the solid Earth. Here, we present Re concentrations and Re isotopic (δ187Re) compositions for a well-characterised sequence of lavas from Hekla volcano, Iceland. The concentration of Re varies from 0.02 to 1.4 ng/g, decreasing from basalt to more evolved lavas. We show that the crystallisation and removal of magnetite is responsible for the Re decrease in this system. By contrast, δ187Re values for the same suite of samples show a relatively narrow range (−0.45 to −0.22 ‰), suggesting minimal resolvable Re isotope fractionation between magnetite and the silicate melt. Together with other samples, including mid-ocean ridge basalts, these first igneous data can be used to estimate a baseline for terrestrial materials (δ187Re = −0.33 ± 0.15 ‰, 2 s.d., n = 14), from which low-temperature Re isotope variations in Earth’s surficial environments can be assessed, alongside the global isotope mass balance of Re
Prototype finline-coupled TES bolometers for CLOVER
CLOVER is an experiment which aims to detect the signature of gravitational
waves from inflation by measuring the B-mode polarization of the cosmic
microwave background. CLOVER consists of three telescopes operating at 97, 150,
and 220 GHz. The 97-GHz telescope has 160 feedhorns in its focal plane while
the 150 and 220-GHz telescopes have 256 horns each. The horns are arranged in a
hexagonal array and feed a polarimeter which uses finline-coupled TES
bolometers as detectors. To detect the two polarizations the 97-GHz telescope
has 320 detectors while the 150 and 220-GHz telescopes have 512 detectors each.
To achieve the target NEPs (1.5, 2.5, and 4.5x10^-17 W/rtHz) the detectors are
cooled to 100 mK for the 97 and 150-GHz polarimeters and 230 mK for the 220-GHz
polarimeter. Each detector is fabricated as a single chip to ensure a 100%
operational focal plane. The detectors are contained in linear modules made of
copper which form split-block waveguides. The detector modules contain 16 or 20
detectors each for compatibility with the hexagonal arrays of horns in the
telescopes' focal planes. Each detector module contains a time-division SQUID
multiplexer to read out the detectors. Further amplification of the multiplexed
signals is provided by SQUID series arrays. The first prototype detectors for
CLOVER operate with a bath temperature of 230 mK and are used to validate the
detector design as well as the polarimeter technology. We describe the design
of the CLOVER detectors, detector blocks, and readout, and present preliminary
measurements of the prototype detectors performance.Comment: 4 pages, 6 figures; to appear in the Proceedings of the 17th
International Symposium on Space Terahertz Technology, held 10-12 May 2006 in
Pari
Solitons in Seiberg-Witten Theory and D-branes in the Derived Category
We analyze the "geometric engineering" limit of a type II string on a
suitable Calabi-Yau threefold to obtain an N=2 pure SU(2) gauge theory. The
derived category picture together with Pi-stability of B-branes beautifully
reproduces the known spectrum of BPS solitons in this case in a very explicit
way. Much of the analysis is particularly easy since it can be reduced to
questions about the derived category of CP1.Comment: 20 pages, LaTex2
Mechanical design and development of TES bolometer detector arrays for the Advanced ACTPol experiment
The next generation Advanced ACTPol (AdvACT) experiment is currently underway
and will consist of four Transition Edge Sensor (TES) bolometer arrays, with
three operating together, totaling ~5800 detectors on the sky. Building on
experience gained with the ACTPol detector arrays, AdvACT will utilize various
new technologies, including 150mm detector wafers equipped with multichroic
pixels, allowing for a more densely packed focal plane. Each set of detectors
includes a feedhorn array of stacked silicon wafers which form a spline profile
leading to each pixel. This is then followed by a waveguide interface plate,
detector wafer, back short cavity plate, and backshort cap. Each array is
housed in a custom designed structure manufactured from high purity copper and
then gold plated. In addition to the detector array assembly, the array package
also encloses cryogenic readout electronics. We present the full mechanical
design of the AdvACT high frequency (HF) detector array package along with a
detailed look at the detector array stack assemblies. This experiment will also
make use of extensive hardware and software previously developed for ACT, which
will be modified to incorporate the new AdvACT instruments. Therefore, we
discuss the integration of all AdvACT arrays with pre-existing ACTPol
infrastructure.Comment: 9 pages, 5 figures, SPIE Astronomical Telescopes and Instrumentation
conference proceeding
The Atacama Cosmology Telescope: Temperature and Gravitational Lensing Power Spectrum Measurements from Three Seasons of Data
We present the temperature power spectra of the cosmic microwave background
(CMB) derived from the three seasons of data from the Atacama Cosmology
Telescope (ACT) at 148 GHz and 218 GHz, as well as the cross-frequency spectrum
between the two channels. We detect and correct for contamination due to the
Galactic cirrus in our equatorial maps. We present the results of a number of
tests for possible systematic error and conclude that any effects are not
significant compared to the statistical errors we quote. Where they overlap, we
cross-correlate the ACT and the South Pole Telescope (SPT) maps and show they
are consistent. The measurements of higher-order peaks in the CMB power
spectrum provide an additional test of the Lambda CDM cosmological model, and
help constrain extensions beyond the standard model. The small angular scale
power spectrum also provides constraining power on the Sunyaev-Zel'dovich
effects and extragalactic foregrounds. We also present a measurement of the CMB
gravitational lensing convergence power spectrum at 4.6-sigma detection
significance.Comment: 21 pages; 20 figures, Submitted to JCAP, some typos correcte
The Atacama Cosmology Telescope: A Measurement of the Cosmic Microwave Background Power Spectrum at 148 and 218 GHz from the 2008 Southern Survey
We present measurements of the cosmic microwave background (CMB) power
spectrum made by the Atacama Cosmology Telescope at 148 GHz and 218 GHz, as
well as the cross-frequency spectrum between the two channels. Our results
clearly show the second through the seventh acoustic peaks in the CMB power
spectrum. The measurements of these higher-order peaks provide an additional
test of the {\Lambda}CDM cosmological model. At l > 3000, we detect power in
excess of the primary anisotropy spectrum of the CMB. At lower multipoles 500 <
l < 3000, we find evidence for gravitational lensing of the CMB in the power
spectrum at the 2.8{\sigma} level. We also detect a low level of Galactic dust
in our maps, which demonstrates that we can recover known faint, diffuse
signals.Comment: 19 pages, 13 figures. Submitted to ApJ. This paper is a companion to
Hajian et al. (2010) and Dunkley et al. (2010
Prion infectivity in the spleen of a <em>PRNP</em> heterozygous individual with subclinical variant Creutzfeldt-Jakob disease
Blood transfusion has been identified as a source of human-to-human transmission of variant Creutzfeldt–Jakob disease. Three cases of variant Creutzfeldt–Jakob disease have been identified following red cell transfusions from donors who subsequently developed variant Creutzfeldt–Jakob disease and an asymptomatic red cell transfusion recipient, who did not die of variant Creutzfeldt–Jakob disease, has been identified with prion protein deposition in the spleen and a lymph node, but not the brain. This individual was heterozygous (MV) at codon 129 of the prion protein gene (PRNP), whereas all previous definite and probable cases of variant Creutzfeldt–Jakob disease have been methionine homozygotes (MM). A critical question for public health is whether the prion protein deposition reported in peripheral tissues from this MV individual correlates with infectivity. Additionally it is important to establish whether the PRNP codon 129 genotype has influenced the transmission characteristics of the infectious agent. Brain and spleen from the MV blood recipient were inoculated into murine strains that have consistently demonstrated transmission of the variant Creutzfeldt–Jakob disease agent. Mice were assessed for clinical and pathological signs of disease and transmission data were compared with other transmission studies in variant Creutzfeldt–Jakob disease, including those on the spleen and brain of the donor to the index case. Transmission of variant Creutzfeldt–Jakob disease was observed from the MV blood recipient spleen, but not from the brain, whereas there was transmission from both spleen and brain tissues from the red blood cell donor. Longer incubation times were observed for the blood donor spleen inoculum compared with the blood donor brain inoculum, suggesting lower titres of infectivity in the spleen. The distribution of vacuolar pathology and abnormal prion protein in infected mice were similar following inoculation with both donor and recipient spleen homogenates, providing initial evidence of similar transmission properties after propagation in PRNP codon 129 MV and MM individuals. These studies demonstrate that spleen tissue from a PRNP MV genotype individual can propagate the variant Creutzfeldt–Jakob disease agent and that the infectious agent can be present in the spleen without CNS involvement
The Atacama Cosmology Telescope: Extragalactic Sources at 148 GHz in the 2008 Survey
We report on extragalactic sources detected in a 455 square-degree map of the
southern sky made with data at a frequency of 148 GHz from the Atacama
Cosmology Telescope 2008 observing season. We provide a catalog of 157 sources
with flux densities spanning two orders of magnitude: from 15 to 1500 mJy.
Comparison to other catalogs shows that 98% of the ACT detections correspond to
sources detected at lower radio frequencies. Three of the sources appear to be
associated with the brightest cluster galaxies of low redshift X-ray selected
galaxy clusters. Estimates of the radio to mm-wave spectral indices and
differential counts of the sources further bolster the hypothesis that they are
nearly all radio sources, and that their emission is not dominated by
re-emission from warm dust. In a bright (>50 mJy) 148 GHz-selected sample with
complete cross-identifications from the Australia Telescope 20 GHz survey, we
observe an average steepening of the spectra between 5, 20, and 148 GHz with
median spectral indices of , , and . When the
measured spectral indices are taken into account, the 148 GHz differential
source counts are consistent with previous measurements at 30 GHz in the
context of a source count model dominated by radio sources. Extrapolating with
an appropriately rescaled model for the radio source counts, the Poisson
contribution to the spatial power spectrum from synchrotron-dominated sources
with flux density less than 20 mJy is C^{\rm Sync} = (2.8 \pm 0.3) \times
10^{-6} \micro\kelvin^2.Comment: Accepted to Ap
The Atacama Cosmology Telescope: Cosmology from Galaxy Clusters Detected via the Sunyaev-Zel'dovich Effect
We present constraints on cosmological parameters based on a sample of
Sunyaev-Zel'dovich-selected galaxy clusters detected in a millimeter-wave
survey by the Atacama Cosmology Telescope. The cluster sample used in this
analysis consists of 9 optically-confirmed high-mass clusters comprising the
high-significance end of the total cluster sample identified in 455 square
degrees of sky surveyed during 2008 at 148 GHz. We focus on the most massive
systems to reduce the degeneracy between unknown cluster astrophysics and
cosmology derived from SZ surveys. We describe the scaling relation between
cluster mass and SZ signal with a 4-parameter fit. Marginalizing over the
values of the parameters in this fit with conservative priors gives sigma_8 =
0.851 +/- 0.115 and w = -1.14 +/- 0.35 for a spatially-flat wCDM cosmological
model with WMAP 7-year priors on cosmological parameters. This gives a modest
improvement in statistical uncertainty over WMAP 7-year constraints alone.
Fixing the scaling relation between cluster mass and SZ signal to a fiducial
relation obtained from numerical simulations and calibrated by X-ray
observations, we find sigma_8 = 0.821 +/- 0.044 and w = -1.05 +/- 0.20. These
results are consistent with constraints from WMAP 7 plus baryon acoustic
oscillations plus type Ia supernoava which give sigma_8 = 0.802 +/- 0.038 and w
= -0.98 +/- 0.053. A stacking analysis of the clusters in this sample compared
to clusters simulated assuming the fiducial model also shows good agreement.
These results suggest that, given the sample of clusters used here, both the
astrophysics of massive clusters and the cosmological parameters derived from
them are broadly consistent with current models.Comment: 12 pages, 7 figures. Submitted to Ap
- …