59,497 research outputs found
Computer program for predicting symmetric jet mixing of compressible flow in jets
Finite-difference computer program has been developed for treating mixing of two parallel and compressible air streams; one of them may be supersonic. This development is restricted to symmetric jet mixing in which high-speed jet is located on axis of channel and no provision is made for blowing or suction along channel walls
A high-gain omnidirectional satellite antenna technique Final report
High gain omnidirectional satellite system design, using planar and circular multiple beam arrays and solid state switchin
"Not an idle spectator": Geoffrey Hill as model reviewer
Geoffrey Hill’s prose has prompted longstanding critical controversy, much of which turns on the perceived difficulty, intransigence and anachronism of his oeuvre as a whole. This paper proposes that new ways to navigate this controversy can be found in Hill’s preoccupation with the exemplary dimensions of writing – that is, in his interest in the poet’s capacity to offer examples (positive and negative) to a community of readers. The discussion pays particular attention to the connections Hill’s reviews establish between style and ethical choice and between literary difficulty and democracy; connections which are intertwined with his ethics of exemplarity in fundamental ways. The paper also engages with those dimensions of literary exemple-use which emerge in new or unusual ways in his prose: his presentation of ‘models’ or ideals for the organisation of civil society; his treatment of certain literary works as exemplars or embodiments of philosophical ideas; and his procedural tic of ‘sampling’ regularly for the purpose of chastisement the ‘bad example’ set by some of the works he criticises
Helioseismic Ring Analysis of CME Source Regions
We apply the ring diagram technique to source regions of halo coronal mass
ejections (CMEs) to study changes in acoustic mode parameters before, during,
and after the onset of CMEs. We find that CME regions associated with a low
value of magnetic flux have line widths smaller than the quiet regions implying
a longer life-time for the oscillation modes. We suggest that this criterion
may be used to forecast the active regions which may trigger CMEs.Comment: Accepted for publication in J. Astrophys. Astr. Also available at
http://www2.nso.edu/staff/sushant/paper.htm
Scanning apertureless microscopy below the diffraction limit: Comparisons between theory and experiment
The exact nature of the signal in scanning apertureless microscopy techniques is the subject of much debate. We have sought to resolve this controversy by carrying out simulations and experiments on the same structures. Simulations of a model of tip–sample coupling are shown to exhibit features that are in agreement with experimental observations at dimensions below the diffraction limit. The simulation of the optical imaging process is carried out using atomic force microscope data as a topographical template and a tip–sample dipole coupling model as the source of optical signal. The simulations show a number of key fingerprints including a dependence on the polarization of the external laser source, the size of the tip, and index of refraction of the sample being imaged. The experimental results are found to be in agreement with many of the features of the simulations. We conclude that the results of the dipole coupling theory agree qualitatively with experimental data and that apertureless microscopy measures optical properties, not just topography
Description of superdeformed bands in light N=Z nuclei using the cranked HFB method
Superdeformed states in light nuclei are studied by means of the
self-consistent cranking calculation (i.e., the P + QQ model based on the
cranked Hartree-Fock-Bogoliubov method). Analyses are given for two typical
cases of superdeformed bands in the mass region, that is, bands
where backbending is absent (Ca) and present (Ar). Investigations
are carried out, particularly for the following points: cross-shell excitations
in the sd and pf shells; the role of the g and d orbitals; the
effect of the nuclear pairing; and the interplay between triaxiality and band
termination.Comment: 17 pages, 18 figures, accepted in Phys. Rev.
An experimental comparison of several current viscoplastic constitutive models at elevated temperature
Four current viscoplastic models are compared experimentally for Inconel 718 at 593 C. This material system responds with apparent negative strain rate sensitivity, undergoes cyclic work softening, and is susceptible to low cycle fatigue. A series of tests were performed to create a data base from which to evaluate material constants. A method to evaluate the constants is developed which draws on common assumptions for this type of material, recent advances by other researchers, and iterative techniques. A complex history test, not used in calculating the constants, is then used to compare the predictive capabilities of the models. The combination of exponentially based inelastic strain rate equations and dynamic recovery is shown to model this material system with the greatest success. The method of constant calculation developed was successfully applied to the complex material response encountered. Backstress measuring tests were found to be invaluable and to warrant further development
An automated procedure for material parameter evaluation for viscoplastic constitutive models
An automated procedure is presented for evaluating the material parameters in Walker's exponential viscoplastic constitutive model for metals at elevated temperature. Both physical and numerical approximations are utilized to compute the constants for Inconel 718 at 1100 F. When intermediate results are carefully scrutinized and engineering judgement applied, parameters may be computed which yield stress output histories that are in agreement with experimental results. A qualitative assessment of the theta-plot method for predicting the limiting value of stress is also presented. The procedure may also be used as a basis to develop evaluation schemes for other viscoplastic constitutive theories of this type
Analysis and testing of two-dimensional vented Coanda ejectors with asymmetric variable area mixing sections
The analysis of asymmetric, curved (Coanda) ejector flow has been completed using a finite difference technique and a quasi-orthogonal streamline coordinate system. The boundary layer type jet mixing analysis accounts for the effect of streamline curvature in pressure gradients normal to the streamlines and on eddy viscosities. The analysis assured perfect gases, free of pressure discontinuities and flow separation and treated three compound flows of supersonic and subsonic streams. Flow parameters and ejector performance were measured in a vented Coanda flow geometry for the verification of the computer analysis. A primary converging nozzle with a discharge geometry of 0.003175 m x 0.2032 m was supplied with 0.283 cu m/sec of air at about 241.3 KPa absolute stagnation pressure and 82 C stagnation temperature. One mixing section geometry was used with a 0.127 m constant radius Coanda surface. Eight tests were run at spacing between the Coanda surface and primary nozzle 0.01915 m and 0.318 m and at three angles of Coanda turning: 22.5 deg, 45.0 deg, and 75.0 deg. The wall static pressures, the loci of maximum stagnation pressures, and the stagnation pressure profiles agree well between analytical and experimental results
- …