78,165 research outputs found
A theoretical approach for analyzing the restabilization of wakes
Recently reported experimental results demonstrate that restabilization of the low-Reynolds-number flow past a circular cylinder can be achieved by the placement of a smaller cylinder in the wake of the first at particular locations. Traditional numerical procedures for modeling such phenomena are computationally expensive. An approach is presented here in which the properties of the adjoint solutions to the linearized equations of motion are exploited to map quickly the best positions for the small cylinder's placement. Comparisons with experiment and previous computations are favorable. The approach is shown to be applicable to general flows, illustrating how strongly control mechanisms that involve sources of momentum couple to unstable (or stable) modes of the system
Analysis of non-premixed turbulent reacting flows
Studies of chemical reactions occurring in turbulent flows are important in the understanding of combustion and other applications. Current numerical methods are limited in their applications due to the numerical resolution required to completely capture all length scales, but, despite the fact that realistic combustion cannot be solved completely, numerical simulations can be used to give insight into the interaction between the processes of turbulence and chemical reaction. The objective was to investigate the effects of turbulent motion on the effects of chemical reaction to gain some insight on the interaction of turbulence, molecular diffusion, and chemical reaction to support modeling efforts. A direct turbulence simulation spectral code was modified to include the effects of chemical reaction and applied to an initial value problem of chemical reaction between non-premixed species. The influence of hydrodynamics on the instantaneous structure of the reaction was investigated. The local scalar dissipation rates and the local reaction rates were examined to determine the influence of vorticity or rate of strain on the reaction and the structure of the scalar field
INTERP3: A computer routine for linear interpolation of trivariate functions defined by nondistinct unequally spaced variables
A report on the computer routine INTERP3 is presented. The routine is designed to linearly interpolate a variable which is a function of three independent variables. The variables within the parameter arrays do not have to be distinct, or equally spaced, and the array variables can be in increasing or decreasing order
Optimising Matrix Product State Simulations of Shor's Algorithm
We detail techniques to optimise high-level classical simulations of Shor's
quantum factoring algorithm. Chief among these is to examine the entangling
properties of the circuit and to effectively map it across the one-dimensional
structure of a matrix product state. Compared to previous approaches whose
space requirements depend on , the solution to the underlying order-finding
problem of Shor's algorithm, our approach depends on its factors. We performed
a matrix product state simulation of a 60-qubit instance of Shor's algorithm
that would otherwise be infeasible to complete without an optimised
entanglement mapping.Comment: 8 pages, 2 figures, 2 tables. v2 using PDFLaTeX compiler. v3 to
include extra references. v4 for publication in Quantu
Robust CNOT gates from almost any interaction
There are many cases where the interaction between two qubits is not
precisely known, but single qubit operations are available. In this paper we
show how, regardless of an incomplete knowledge of the strength or form of the
interaction between two qubits, it is often possible to construct a CNOT gate
which has arbitrarily high fidelity. In particular, we show that oscillations
in the strength of the exchange interaction in solid state Si and Ge structures
are correctable.Comment: 5 pages, 2 figure
Research on the structural performance of large rocket booster subjected to longitudinal excitations
Dynamic structural behavior of large booster rocket subjected to longitudinal excitations - analysis of theoretical mode
Z -> b\bar{b} Versus Dynamical Electroweak Symmetry Breaking involving the Top Quark
In models of dynamical electroweak symmetry breaking which sensitively
involve the third generation, such as top quark condensation, the effects of
the new dynamics can show up experimentally in Z->b\bar{b}. We compare the
sensitivity of Z->b\bar{b} and top quark production at the Tevatron to models
of the new physics. Z->b\bar{b} is a relatively more sensitive probe to new
strongly coupled U(1) gauge bosons, while it is generally less sensitive a
probe to new physics involving color octet gauge bosons as is top quark
production itself. Nonetheless, to accomodate a significant excess in
Z->b\bar{b} requires choosing model parameters that may be ruled out within run
I(b) at the Tevatron.Comment: LaTex file, 19 pages + 2 Figs., Fermilab-Pub-94/231-
Large-eddy simulation and multiscale modelling of a Richtmyer–Meshkov instability with reshock
Large-eddy simulations of the Richtmyer–Meshkov instability with reshock are pre- sented and the results are compared with experiments. Several configurations of shocks initially travelling from light (air) to heavy (sulfur hexafluoride, SF6) have been simulated to match previous experiments and good agreement is found in the growth rates of the turbulent mixing zone (TMZ). The stretched-vortex subgrid model used in this study allows for subgrid continuation modelling, where statistics of the unresolved scales of the flow are estimated. In particular, this multiscale modelling allows the anisotropy of the flow to be extended to the dissipation scale, eta, and estimates to be formed for the subgrid probability density function of the mixture fraction of air/SF6 based on the subgrid variance, including the effect of Schmidt number
- …
