1,525 research outputs found
Genetic analysis of tolerance to rice tungro bacilliform virus in rice (Oryza sativa L.) through agroinoculation
Balimau Putih [an Indonesian cultivar tolerant to rice tungro bacilliform virus (RTBV)] was crossed with IR64 (RTBV, susceptible variety) to produce the three filial generations F1, F2 and F3. Agroinoculation was used to introduce RTBV into the test plants. RTBV tolerance was based on the RTBV level in plants by analysis of coat protein using enzyme-linked immunosorbent assay. The level of RTBV in cv. Balimau Putih was significantly lower than that of IR64 and the susceptible control, Taichung Native 1. Mean RTBV levels of the F1, F2 and F3 populations were comparable with one another and with the average of the parents. Results indicate that there was no dominance and an additive gene action may control the expression of tolerance to RTBV. Tolerance based on the level of RTBV coat protein was highly heritable (0.67) as estimated using the mean values of F3 lines, suggesting that selection for tolerance to RTBV can be performed in the early selfing generations using the technique employed in this study. The RTBV level had a negative correlation with plant height, but positive relationship with disease index valu
Microscopic thickness determination of thin graphite films formed on SiC from quantized oscillation in reflectivity of low-energy electrons
Low-energy electron microscopy (LEEM) was used to measure the reflectivity of
low-energy electrons from graphitized SiC(0001). The reflectivity shows
distinct quantized oscillations as a function of the electron energy and
graphite thickness. Conduction bands in thin graphite films form discrete
energy levels whose wave vectors are normal to the surface. Resonance of the
incident electrons with these quantized conduction band states enhances
electrons to transmit through the film into the SiC substrate, resulting in
dips in the reflectivity. The dip positions are well explained using
tight-binding and first-principles calculations. The graphite thickness
distribution can be determined microscopically from LEEM reflectivity
measurements.Comment: 7 pages, 3 figure
Intrinsic and extrinsic decay of edge magnetoplasmons in graphene
We investigate intrinsic and extrinsic decay of edge magnetoplasmons (EMPs)
in graphene quantum Hall (QH) systems by high-frequency electronic
measurements. From EMP resonances in disk shaped graphene, we show that the
dispersion relation of EMPs is nonlinear due to interactions, giving rise to
intrinsic decay of EMP wavepacket. We also identify extrinsic dissipation
mechanisms due to interaction with localized states in bulk graphene from the
decay time of EMP wavepackets. We indicate that, owing to the unique linear and
gapless band structure, EMP dissipation in graphene can be lower than that in
GaAs systems.Comment: 5 page
Shot noise generated by graphene p–n junctions in the quantum Hall effect regime
International audienceGraphene offers a unique system to investigate transport of Dirac Fermions at p–n junctions. In a magnetic field, combination of quantum Hall physics and the characteristic transport across p–n junctions leads to a fractionally quantized conductance associated with the mixing of electron-like and hole-like modes and their subsequent partitioning. The mixing and partitioning suggest that a p–n junction could be used as an electronic beam splitter. Here we report the shot noise study of the mode-mixing process and demonstrate the crucial role of the p–n junction length. For short p–n junctions, the amplitude of the noise is consistent with an electronic beam-splitter behaviour, whereas, for longer p–n junctions, it is reduced by the energy relaxation. Remarkably, the relaxation length is much larger than typical size of mesoscopic devices, encouraging using graphene for electron quantum optics and quantum information processing
Multiscale Kinetic Monte-Carlo for Simulating Epitaxial Growth
We present a fast Monte-Carlo algorithm for simulating epitaxial surface
growth, based on the continuous-time Monte-Carlo algorithm of Bortz, Kalos and
Lebowitz. When simulating realistic growth regimes, much computational time is
consumed by the relatively fast dynamics of the adatoms. Continuum and
continuum-discrete hybrid methods have been developed to approach this issue;
however in many situations, the density of adatoms is too low to efficiently
and accurately simulate as a continuum. To solve the problem of fast adatom
dynamics, we allow adatoms to take larger steps, effectively reducing the
number of transitions required. We achieve nearly a factor of ten speed up, for
growth at moderate temperatures and large D/F.Comment: 7 pages, 6 figures; revised text, accepted by PR
Morphology of graphene thin film growth on SiC(0001)
Epitaxial films of graphene on SiC(0001) are interesting from a basic physics
as well as applications-oriented point of view. Here we study the emerging
morphology of in-vacuo prepared graphene films using low energy electron
microscopy (LEEM) and angle-resolved photoemission (ARPES). We obtain an
identification of single and bilayer of graphene film by comparing the
characteristic features in electron reflectivity spectra in LEEM to the PI-band
structure as revealed by ARPES. We demonstrate that LEEM serves as a tool to
accurately determine the local extent of graphene layers as well as the layer
thickness
- …