284 research outputs found

    The relative ages of ectomycorrhizal mushrooms and their plant hosts estimated using Bayesian relaxed molecular clock analyses

    Get PDF
    Background Ectomycorrhizae (ECM) are symbioses formed by polyphyletic assemblages of fungi (mostly Agaricomycetes) and plants (mostly Pinaceae and angiosperms in the rosid clade). Efforts to reconstruct the evolution of the ECM habit in Agaricomycetes have yielded vastly different results, ranging from scenarios with many relatively recent origins of the symbiosis and no reversals to the free-living condition; a single ancient origin of ECM and many subsequent transitions to the free-living condition; or multiple gains and losses of the association. To test the plausibility of these scenarios, we performed Bayesian relaxed molecular clock analyses including fungi, plants, and other eukaryotes, based on the principle that a symbiosis cannot evolve prior to the origin of both partners. As we were primarily interested in the relative ages of the plants and fungi, we did not attempt to calibrate the molecular clock using the very limited fossil record of Agaricomycetes. Results Topologically constrained and unconstrained analyses suggest that the root node of the Agaricomycetes is much older than either the rosids or Pinaceae. The Agaricomycetidae, a large clade containing the Agaricales and Boletales (collectively representing 70% of Agaricomycetes), is also significantly older than the rosids. The relative age of Agaricomycetidae and Pinaceae, however, is sensitive to tree topology, and the inclusion or exclusion of the gnetophyte Welwitschia mirabilis. Conclusion The ancestor of the Agaricomycetes could not have been an ECM species because it existed long before any of its potential hosts. Within more derived clades of Agaricomycetes, there have been at least eight independent origins of ECM associations involving angiosperms, and at least six to eight origins of associations with gymnosperms. The first ECM symbioses may have involved Pinaceae, which are older than rosids, but several major clades of Agaricomycetes, such as the Boletales and Russulales, are young enough to have been plesiomorphically associated with either rosids or Pinaceae, suggesting that some contemporary ECM partnerships could be of very ancient origin

    Transcriptomics of Temporal- versus Substrate-Specific Wood Decay in the Brown-Rot Fungus Fibroporia radiculosa

    Get PDF
    Brown-rot fungi lack many enzymes associated with complete wood degradation, such as lignin-attacking peroxidases, and have developed alternative mechanisms for rapid wood breakdown. To identify the effects of culture conditions and wood substrates on gene expression, we grew Fibroporia radiculosa in submerged cultures containing Wiley milled wood (5 days) and solid wood wafers (30 days), using aspen, pine, and spruce as a substrate

    Sulfur assimilation using gaseous carbonyl sulfideby the soil fungus Trichoderma harzianum

    Get PDF
    Fungi have the capacity to assimilate a diverse range of both inorganic and organic sulfur compounds. It has been recognized that all sulfur sources taken up by fungi are in soluble forms. In this study, we present evidence that fungi can utilize gaseous carbonyl sulfide(COS) for the assimilation of a sulfur compound. We found that the filamentousfungus Trichoderma harzianum strain THIF08, which has constitutively high COS-degrading activity, was able to grow with COS as the sole sulfur source. Cultivation with 34S-labeled COS revealed that sulfur atom from COS was incorporated into intracellular metabolites such as glutathione and ergothioneine. COS degradation by strain THIF08, in which as much of the moisture derived from the agar medium as possible was removed, indicated that gaseous COS was taken up directly into the cell. Escherichia coli transformed with a COS hydrolase (COSase) gene, which is clade D of the ő≤-class carbonic anhydrase subfamily enzyme with high specificity for COS but low activity for CO2 hydration, showed that the COSase is involved in COS assimilation. Comparison of sulfur metabolites of strain THIF08 revealed a higher relative abundance of reduced sulfur compounds under the COS-supplemented condition than the sulfate-supplemented condition, suggesting that sulfur assimilation is more energetically efficient with COS than with sulfate because there is no redox change of sulfur. Phylogenetic analysis of the genes encoding COSase, which are distributed in a wide range of fungal taxa, suggests that the common ancestor of Ascomycota, Basidiomycota, and Mucoromycota acquired COSase at about 790-670 Ma. ¬© 2024 Iizuka et al

    Climate, decay, and the death of the coal forests

    Get PDF
    After death, most of the biological carbon in organisms (Corg) is returned to the atmosphere as CO2 through the respiration of decomposers and detritivores or by combustion. However, the balance between these processes is not perfect, and when productivity exceeds decomposition, carbon sequestration results. An unparalleled interval of carbon sequestration in Earth‚Äôs history occurred during the Late Carboniferous (Pennsylvanian) and Permian Periods (ca. 323‚Äď252 Ma), when arborescent vascular plants related to living club mosses (Lycophytes), ferns (Monilophytes), horsetails (Equisetophytes) and seed plants (Spermatophytes) formed extensive forests in coastal wetlands. On their death, these plants became buried in sediments, where they transformed into peat, lignite, and, finally, coal

    Polypores and genus concepts in Phanerochaetaceae (Polyporales, Basidiomycota)

    Get PDF
    Correction DOI:10.3897/mycokeys.19.11562We explored whether DNA-phylogeny-based and morphology-based genus concepts can be reconciled in the basidiomycete family Phanerochaetaceae. Our results show that macromorphology of fruiting bodies and hymenophore construction do not reflect monophyletic groups. However, by integrating micromorphology and re-defining genera, harmonization of DNA phylogeny and morphological genus concepts is possible in most cases. In the case of one genus (Phlebiopsis), our genetic markers could not resolve genus limits satisfactorily and a clear morphological definition could not be identified. We combine extended species sampling, microscopic studies of fruiting bodies and phylogenetic analyses of ITS, nLSU and rpb1 to revise genus concepts. Three new polypore genera are ascribed to the Phanerochaetaceae: Oxychaete gen. nov. (type Oxyporus cervinogilvus), Phanerina gen. nov. (type Ceriporia mellea), and Riopa (including Ceriporia metamorphosa and Riopa pudens sp. nov.). Phlebiopsis is extended to include Dentocorticium pilatii, further species of Hjortstamia and the monotypic polypore genus Castanoporus. The polypore Ceriporia inflata is combined into Phanerochaete. The identity of the type species of the genus Riopa, R. davidii, has been misinterpreted in the current literature. The species has been included in Ceriporia as a species of its own or placed in synonymy with Ceriporia camaresiana. The effort to properly define R. davidii forced us to study Ceriporia more widely. In the process we identified five closely related Ceriporia species that belong to the true Ceriporia clade (Irpicaceae). We describe those species here, and introduce the Ceriporia pierii group. We also select a lectotype and an epitype for Riopa metamorphosa and neotypes for Sporotrichum aurantiacum and S. aurantium, the type species of the anamorphic genus Sporotrichum, and recommend that teleomorphic Riopa is conserved against it.Peer reviewe
    • ‚Ķ