10 research outputs found

    Flexible and High-Throughput Photothermal Biosensors for Rapid Screening of Acute Myocardial Infarction Using Thermochromic Paper-Based Image Analysis

    No full text
    Herein, we developed a flexible, low-cost thermosensitive fiber paper for the visual display in photothermal biosensing systems for early acute myocardial infarction. The thermal signal visualization device was encapsulated with rewritable thermal fibers, which exhibited excellent stability and reversibility. The mechanism of color change in thermal paper was based on a temperature-driven reversible transformation of the structure of the dye molecule (crystalline violet lactone, CVL). It exhibits a gradation from blue to colorless at higher temperatures and gradually returns to blue when the temperature drops. Immobilization and cascade enzymatic reactions of target molecules occurred in an integrated 3D-printed detection device, a photothermal conversion process occurred under near-infrared light excitation, and the colorimetric change values of the encapsulated thermal paper were recorded and evaluated for possible pathogenicity using a smartphone. It was worth noting that the effect of the thermogenic ring-opening behavior of CVL on the macroscopic phenomenon of color change was obtained by density functional theory calculations. Under optimized conditions, the naked-eye-recognizable range of the thermal paper-based photothermal immunoassay sensor was 0.2–20 ng mL–1, This work creatively presents theoretical studies of promising thermal paper-based photothermal biosensors and provides new insights for the development of low-cost, instrument-free portable photothermal biosensors

    Bioinspired Self-Powered Piezoresistive Sensors for Simultaneous Monitoring of Human Health and Outdoor UV Light Intensity

    No full text
    The exact fabrication of precise three-dimensional structures for piezoresistive sensors necessitates superior manufacturing methods or tooling, which are accompanied by time-consuming processes and the potential for environmental harm. Herein, we demonstrated a method for in situ synthesis of zinc oxide nanorod (ZnO NR) arrays on graphene-treated cotton and paper substrates and constructed highly sensitive, flexible, wearable, and chemically stable strain sensors. Based on the structure of pine trees and needles in nature, the hybrid sensing layer consisted of graphene-attached cotton or paper fibers and ZnO NRs, and the results showed a high sensitivity of 0.389, 0.095, and 0.029 kPa–1 and an ultra-wide linear range of 0–100 kPa of this sensor under optimal conditions. Our study found that water absorption and swelling of graphene fibers and the associated reduction of pore size and growth of zinc oxide were detrimental to pressure sensor performance. A random line model was developed to examine the effects of different hydrothermal times on sensor performance. Meanwhile, pulse detection, respiration detection, speech recognition, and motion detection, including finger movements, walking, and throat movements, were used to show their practical application in human health activity monitoring. In addition, monolithically grown ZnO NRs on graphene cotton sheets had been integrated into a flexible sensing platform for outdoor UV photo-indication, which is, to our knowledge, the first successful case of an integrated UV photo-detector and motion sensor. Due to its excellent strain detection and UV detection abilities, these strategies are a step forward in developing wearable sensors that are cost-controllable and high-performance

    Au Nanoparticle-Decorated ZnO Microflower-Based Immunoassay for Photoelectrochemical Detection of Human Prostate-Specific Antigen

    No full text
    Herein, an in situ amplified photoelectrochemical (PEC) immunoassay with ZnO microflowers (ZnO MFs) decorated with gold nanoparticles (Au NPs) was developed to determine human prostate-specific antigen (PSA) using l-cysteine-loaded liposomes for signal amplification. Initially, ZnO MFs with smooth and well-defined morphology were synthesized under hydrothermal conditions. The heterostructured microflowers were formed by depositing Au NPs on ZnO microflowers using trisodium citrate. l-Cysteine (l-Cys)-encapsulated liposomes conjugated with detection antibodies were used to fabricate a sandwiched immunocomplex on a capture antibody-modified microtiter plate in the presence of target PSA. The liposomes were lysed using Triton X-100 to release the encapsulated l-Cys, thereby increasing the photocurrent on Au NP-decorated ZnO MFs. Results indicated that the photoelectrochemical immunoassay displayed good photocurrents to response PSA concentrations from 0.01 to 20 ng mL–1, and the detection PSA concentration was as low as 0.79 pg mL–1. Furthermore, the photoelectrochemical immunoassay had good precision, high selectivity, and well-matched accuracy toward target PSA in human serum specimens using the commercialized human PSA ELISA kit as a reference

    Bioinspired Self-Powered Piezoresistive Sensors for Simultaneous Monitoring of Human Health and Outdoor UV Light Intensity

    No full text
    The exact fabrication of precise three-dimensional structures for piezoresistive sensors necessitates superior manufacturing methods or tooling, which are accompanied by time-consuming processes and the potential for environmental harm. Herein, we demonstrated a method for in situ synthesis of zinc oxide nanorod (ZnO NR) arrays on graphene-treated cotton and paper substrates and constructed highly sensitive, flexible, wearable, and chemically stable strain sensors. Based on the structure of pine trees and needles in nature, the hybrid sensing layer consisted of graphene-attached cotton or paper fibers and ZnO NRs, and the results showed a high sensitivity of 0.389, 0.095, and 0.029 kPa–1 and an ultra-wide linear range of 0–100 kPa of this sensor under optimal conditions. Our study found that water absorption and swelling of graphene fibers and the associated reduction of pore size and growth of zinc oxide were detrimental to pressure sensor performance. A random line model was developed to examine the effects of different hydrothermal times on sensor performance. Meanwhile, pulse detection, respiration detection, speech recognition, and motion detection, including finger movements, walking, and throat movements, were used to show their practical application in human health activity monitoring. In addition, monolithically grown ZnO NRs on graphene cotton sheets had been integrated into a flexible sensing platform for outdoor UV photo-indication, which is, to our knowledge, the first successful case of an integrated UV photo-detector and motion sensor. Due to its excellent strain detection and UV detection abilities, these strategies are a step forward in developing wearable sensors that are cost-controllable and high-performance

    Exploiting Photoelectric Activities and Piezoelectric Properties of NaNbO<sub>3</sub> Semiconductors for Point-of-Care Immunoassay

    No full text
    Point-of-care testing (POCT) technology has made major breakthroughs in community medicine and physician office situations, in tandem with the more ubiquitous and intensive usage of highly integrated quick detection equipment for illness diagnosis, personal care, and mobile healthcare. Although the photoelectrochemical (PEC)-based POCT platform offers the benefits of cheap cost and good user engagement, its commercialization is still limited by the photodetection components’ downsizing and mobility, among other factors. In this work, a novel highly integrated PEC biosensor aided by piezophototronics to enhance the efficiency of PEC testing was reported for flexible detection of cancer-associated antigens in biological fluids (prostate-specific antigen, PSA, used as an example). Multiple signal enhancement strategies, including a magnetic bead-linked enzyme-linked immune system catalyzing the production of ascorbic acid from the substrate and a piezoelectric-assisted enhancement strategy, were used for sensitive detection of the analyte to be tested in human body fluids. Unlike the electron transfer mechanism in heterojunctions, piezoelectric semiconductors promote the transfer of electrons and holes by generating piezoelectric potentials in the ultrasonic field, thus contributing to the performance of the PEC testbed. Under optimized conditions, the test platform achieves good correspondence for PSA at 0.02–40 ng mL–1. Impressively, the test devices are comparable to or even superior to gold standard ELISA kits in terms of cost approval and batch testing. This research demonstrates the potential of piezoelectric semiconductors for POC applications in revolutionary PECs and offers innovative thoughts for the development of new PEC bioanalytical components

    Bioinspired Self-Powered Piezoresistive Sensors for Simultaneous Monitoring of Human Health and Outdoor UV Light Intensity

    No full text
    The exact fabrication of precise three-dimensional structures for piezoresistive sensors necessitates superior manufacturing methods or tooling, which are accompanied by time-consuming processes and the potential for environmental harm. Herein, we demonstrated a method for in situ synthesis of zinc oxide nanorod (ZnO NR) arrays on graphene-treated cotton and paper substrates and constructed highly sensitive, flexible, wearable, and chemically stable strain sensors. Based on the structure of pine trees and needles in nature, the hybrid sensing layer consisted of graphene-attached cotton or paper fibers and ZnO NRs, and the results showed a high sensitivity of 0.389, 0.095, and 0.029 kPa–1 and an ultra-wide linear range of 0–100 kPa of this sensor under optimal conditions. Our study found that water absorption and swelling of graphene fibers and the associated reduction of pore size and growth of zinc oxide were detrimental to pressure sensor performance. A random line model was developed to examine the effects of different hydrothermal times on sensor performance. Meanwhile, pulse detection, respiration detection, speech recognition, and motion detection, including finger movements, walking, and throat movements, were used to show their practical application in human health activity monitoring. In addition, monolithically grown ZnO NRs on graphene cotton sheets had been integrated into a flexible sensing platform for outdoor UV photo-indication, which is, to our knowledge, the first successful case of an integrated UV photo-detector and motion sensor. Due to its excellent strain detection and UV detection abilities, these strategies are a step forward in developing wearable sensors that are cost-controllable and high-performance

    Size-Controlled Engineering Photoelectrochemical Biosensor for Human Papillomavirus-16 Based on CRISPR-Cas12a-Induced Disassembly of Z‑Scheme Heterojunctions

    No full text
    Photoelectrochemical (PEC) biosensors incorporating biomolecular recognition with photon-to-electron conversion capabilities of the photoactive species have been developed for molecular diagnosis, but most involve difficulty in adjusting band gap positions and are unsuitable for PEC biodetection. In this work, an innovative PEC biosensor combined with quantum size-controlled engineering based on quantum confinement by controlling the quantum size was designed for the detection of human papillomavirus-16 (HPV-16) through CRISPR-Cas12a (Cpf1)-induced disassembly of Z-scheme heterojunction. To the best of our knowledge, quantum size-controlled engineering that precisely tunes the properties of photoactive materials is first utilized in the PEC bioanalysis. Based on the quantum size effect, the light absorption efficiency and charge-transfer rate were tuned to suitable levels to obtain the best PEC performance. After incubation with target HPV-16, the binding of Cas12a-crRNA to the target double-stranded DNA (dsDNA) stimulated the activity of indiscriminate cleavage toward single-stranded DNA (ssDNA), resulting in a decrease in photocurrent due to the blocking of electron transfer through the heterojunction. By optimizing experimental conditions, the Z-scheme sensing system exhibited incredible photocurrent response to HPV-16 in the range from 3.0 pM to 600 nM with a detection limit of 1.0 pM. Impressively, the application of the quantum size effect could stimulate more interest in the precise design of band gap structure to improve PEC performance

    CRISPR-Cas12a-Derived Photoelectrochemical Biosensor for Point-Of-Care Diagnosis of Nucleic Acid

    No full text
    This work presented a point-of-care (POC) photoelectrochemical (PEC) biosensing for the detection of human papillomavirus-16 (HPV-16) on a portable electrochemical detection system by using CRISPR-Cas12a trans-cleaving the G-quadruplex for the biorecognition/amplification and a hollow In2O3–In2S3-modified screen-printed electrode (In2O3–In2S3/SPE) as the photoactive material. G-quadruplexes were capable of biocatalytic precipitation (H2O2-mediated 4-chloro-1-naphthol oxidation) on the In2O3–In2S3/SPE surface, resulting in a weakened photocurrent, but suffered from trans-cleavage when the CRISPR-Cas12a system specifically recognized the analyte. The photocurrent results could be directly observed with the card-sized electrochemical device via a smartphone, which displayed a high-value photocurrent for these positive samples, while a low-value photocurrent for the target-free samples. Such a system exhibited satisfying photocurrent responses toward HPV-16 within a wide working range from 5.0 to 5000 pM and allowed for detection of HPV-16 at a concentration as low as 1.2 pM. The proposed assay provided a smartphone signal readout to enable the rapid screening PEC determination of HPV-16 concentration without sophisticated instruments, thus meeting the requirements of remote areas and resource-limited settings. We envision that combining an efficient biometric PEC sensing platform with a wireless card-sized electrochemical device will enable high-throughput POC diagnostic analysis

    Liposome-Embedded Cu<sub>2–<i>x</i></sub>Ag<sub><i>x</i></sub>S Nanoparticle-Mediated Photothermal Immunoassay for Daily Monitoring of cTnI Protein Using a Portable Thermal Imager

    No full text
    Functional photothermal nanomaterials have gained widespread attention in the field of precise cancer therapy and early disease diagnosis due to their unique photothermal conversion properties. However, the relatively narrow temperature response range and the outputable accuracy of commercial thermometers limit the accurate detection of biomarkers. Herein, we designed a liposome-embedded Cu2–xAgxS amplification-based photothermal sensor for the accurate determination of cardiac troponin I (cTnI) in health monitoring and point-of-care testing (POCT). The combinable 3D-printing detecting device monitored and visualized target signal changes in the testing system under the excitation of near-infrared (NIR) light, which was recorded and evaluated for possible pathogenicity by a smartphone. Notably, we predicted the potentially efficient thermal conversion efficiency of Cu2–xAgxS from the structure and charge density distribution, calculated by the first-principles and density functional theory (DFT), which provided a theoretical basis for the construction of novel photothermal materials, and the experimental results proved the correctness of the theoretical projections. Under optimal conditions, the photothermal immunoassay showed a dynamic linear range of 0.02–10 ng mL–1 with a detection limit of 11.2 pg mL–1. This work instructively introduces promising theoretical research and provides new insights for the development of sensitive portable photothermal biosensors

    Chemiluminescence-Derived Self-Powered Photoelectrochemical Immunoassay for Detecting a Low-Abundance Disease-Related Protein

    No full text
    Early diagnosis of cancers relies on the sensitive detection of specific biomarkers, but most of the current testing methods are inaccessible to home healthcare due to cumbersome steps, prolonged testing time, and utilization of toxic and hazardous substances. Herein, we developed a portable self-powered photoelectrochemical (PEC) sensing platform for rapid detection of prostate-specific antigen (PSA, as a model disease-related protein) by integrating a self-powered photoelectric signal output system catalyzed with chemiluminescence-functionalized Au nanoparticles (AuNPs) and a phosphomolybdic acid (PMA)-based photochromic visualization platform. TiO2-g-C3N4-PMA photosensitive materials were first synthesized and functionalized on a sensor chip. The sensor consisted of filter paper modified with a photocatalytic material and a regional laser-etched FTO electrode as an alternative to a conventional PEC sensor with a glass-based electrode. The targeting system involved a monoclonal anti-PSA capture antibody-functionalized Fe3O4 magnetic bead (mAb1-MB) and a polyclonal anti-PSA antibody (pAb2)-N-(4-aminobutyl)-N-ethylisoluminol-AuNP (ABEI-AuNP). Based on the signal intensity of the chemiluminescent system, the photochromic device color changed from light yellow to heteropoly blue through the PMA photoelectric materials integrated into the electrode for visualization of the signal output. In addition, the electrical signal in the PEC system was amplified by a sandwich-type capacitor and readout on a handheld digital multimeter. Under optimum conditions, the sensor exhibited high sensitivity relative to PSA in the range of 0.01–50 ng mL–1 with a low detection limit of 6.25 pg mL–1. The flow-through chemiluminescence reactor with a semiautomatic injection device and magnetic separation was avoid of unstable light source intensity inherent in the chemiluminescence process. Therefore, our strategy provides a new horizon for point-of-care analysis and rapid cost-effective clinical diagnosis
    corecore