101 research outputs found
Graph Neural Networks for Particle Reconstruction in High Energy Physics detectors
Pattern recognition problems in high energy physics are notably different
from traditional machine learning applications in computer vision.
Reconstruction algorithms identify and measure the kinematic properties of
particles produced in high energy collisions and recorded with complex detector
systems. Two critical applications are the reconstruction of charged particle
trajectories in tracking detectors and the reconstruction of particle showers
in calorimeters. These two problems have unique challenges and characteristics,
but both have high dimensionality, high degree of sparsity, and complex
geometric layouts. Graph Neural Networks (GNNs) are a relatively new class of
deep learning architectures which can deal with such data effectively, allowing
scientists to incorporate domain knowledge in a graph structure and learn
powerful representations leveraging that structure to identify patterns of
interest. In this work we demonstrate the applicability of GNNs to these two
diverse particle reconstruction problems
Graph Neural Networks for Particle Reconstruction in High Energy Physics detectors
Pattern recognition problems in high energy physics are notably different
from traditional machine learning applications in computer vision.
Reconstruction algorithms identify and measure the kinematic properties of
particles produced in high energy collisions and recorded with complex detector
systems. Two critical applications are the reconstruction of charged particle
trajectories in tracking detectors and the reconstruction of particle showers
in calorimeters. These two problems have unique challenges and characteristics,
but both have high dimensionality, high degree of sparsity, and complex
geometric layouts. Graph Neural Networks (GNNs) are a relatively new class of
deep learning architectures which can deal with such data effectively, allowing
scientists to incorporate domain knowledge in a graph structure and learn
powerful representations leveraging that structure to identify patterns of
interest. In this work we demonstrate the applicability of GNNs to these two
diverse particle reconstruction problems.Comment: Presented at NeurIPS 2019 Workshop "Machine Learning and the Physical
Sciences
Recommended from our members
The cost of emergency care for children across differing levels of emergency department pediatric readiness.
High emergency department (ED) pediatric readiness is associated with improved survival in children, but the cost is unknown. We evaluated the costs of emergency care for children across quartiles of ED pediatric readiness. This was a retrospective cohort study of children aged 0-17 years receiving emergency services in 747 EDs in 9 states from January 1, 2012, through December 31, 2017. We measured ED pediatric readiness using the weighted Pediatric Readiness Score (range: 0-100). The primary outcome was the total cost of acute care (ED and inpatient) in 2022 dollars, adjusted for ED case mix and hospital characteristics. A total of 15 138 599 children received emergency services, including 27.6% with injuries and 72.4% with acute medical illness. The average adjusted per-patient cost by quartile of ED pediatric readiness ranged from 1064 (quartile 4) for injured children and 1217 for medical children. The resulting cost differences were 6 to 113 (95% CI: 206), respectively. Receiving emergency care in high-readiness EDs was not associated with marked increases in the cost of delivering services
Track Seeding and Labelling with Embedded-space Graph Neural Networks
To address the unprecedented scale of HL-LHC data, the Exa.TrkX project is
investigating a variety of machine learning approaches to particle track
reconstruction. The most promising of these solutions, graph neural networks
(GNN), process the event as a graph that connects track measurements (detector
hits corresponding to nodes) with candidate line segments between the hits
(corresponding to edges). Detector information can be associated with nodes and
edges, enabling a GNN to propagate the embedded parameters around the graph and
predict node-, edge- and graph-level observables. Previously, message-passing
GNNs have shown success in predicting doublet likelihood, and we here report
updates on the state-of-the-art architectures for this task. In addition, the
Exa.TrkX project has investigated innovations in both graph construction, and
embedded representations, in an effort to achieve fully learned end-to-end
track finding. Hence, we present a suite of extensions to the original model,
with encouraging results for hitgraph classification. In addition, we explore
increased performance by constructing graphs from learned representations which
contain non-linear metric structure, allowing for efficient clustering and
neighborhood queries of data points. We demonstrate how this framework fits in
with both traditional clustering pipelines, and GNN approaches. The embedded
graphs feed into high-accuracy doublet and triplet classifiers, or can be used
as an end-to-end track classifier by clustering in an embedded space. A set of
post-processing methods improve performance with knowledge of the detector
physics. Finally, we present numerical results on the TrackML particle tracking
challenge dataset, where our framework shows favorable results in both seeding
and track finding.Comment: Proceedings submission in Connecting the Dots Workshop 2020, 10 page
Graph Neural Networks for Particle Reconstruction in High Energy Physics detectors
Pattern recognition problems in high energy physics are notably different
from traditional machine learning applications in computer vision.
Reconstruction algorithms identify and measure the kinematic properties of
particles produced in high energy collisions and recorded with complex detector
systems. Two critical applications are the reconstruction of charged particle
trajectories in tracking detectors and the reconstruction of particle showers
in calorimeters. These two problems have unique challenges and characteristics,
but both have high dimensionality, high degree of sparsity, and complex
geometric layouts. Graph Neural Networks (GNNs) are a relatively new class of
deep learning architectures which can deal with such data effectively, allowing
scientists to incorporate domain knowledge in a graph structure and learn
powerful representations leveraging that structure to identify patterns of
interest. In this work we demonstrate the applicability of GNNs to these two
diverse particle reconstruction problems
Physics and Computing Performance of the Exa.TrkX TrackML Pipeline
The Exa.TrkX project has applied geometric learning concepts such as metric
learning and graph neural networks to HEP particle tracking. The Exa.TrkX
tracking pipeline clusters detector measurements to form track candidates and
filters them. The pipeline, originally developed using the TrackML dataset (a
simulation of an LHC-like tracking detector), has been demonstrated on various
detectors, including the DUNE LArTPC and the CMS High-Granularity Calorimeter.
This paper documents new developments needed to study the physics and computing
performance of the Exa.TrkX pipeline on the full TrackML dataset, a first step
towards validating the pipeline using ATLAS and CMS data. The pipeline achieves
tracking efficiency and purity similar to production tracking algorithms.
Crucially for future HEP applications, the pipeline benefits significantly from
GPU acceleration, and its computational requirements scale close to linearly
with the number of particles in the event
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the
dynamics of the supernova bursts that produced the heavy elements necessary for
life and whether protons eventually decay --- these mysteries at the forefront
of particle physics and astrophysics are key to understanding the early
evolution of our Universe, its current state and its eventual fate. The
Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed
plan for a world-class experiment dedicated to addressing these questions. LBNE
is conceived around three central components: (1) a new, high-intensity
neutrino source generated from a megawatt-class proton accelerator at Fermi
National Accelerator Laboratory, (2) a near neutrino detector just downstream
of the source, and (3) a massive liquid argon time-projection chamber deployed
as a far detector deep underground at the Sanford Underground Research
Facility. This facility, located at the site of the former Homestake Mine in
Lead, South Dakota, is approximately 1,300 km from the neutrino source at
Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino
charge-parity symmetry violation and mass ordering effects. This ambitious yet
cost-effective design incorporates scalability and flexibility and can
accommodate a variety of upgrades and contributions. With its exceptional
combination of experimental configuration, technical capabilities, and
potential for transformative discoveries, LBNE promises to be a vital facility
for the field of particle physics worldwide, providing physicists from around
the globe with opportunities to collaborate in a twenty to thirty year program
of exciting science. In this document we provide a comprehensive overview of
LBNE's scientific objectives, its place in the landscape of neutrino physics
worldwide, the technologies it will incorporate and the capabilities it will
possess.Comment: Major update of previous version. This is the reference document for
LBNE science program and current status. Chapters 1, 3, and 9 provide a
comprehensive overview of LBNE's scientific objectives, its place in the
landscape of neutrino physics worldwide, the technologies it will incorporate
and the capabilities it will possess. 288 pages, 116 figure
The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy.
Peer reviewe
Tau Neutrinos in the Next Decade: From GeV to EeV
Tau neutrinos are the least studied particle in the standard model. This whitepaper discusses the current and expected upcoming status of tau neutrino physics with attention to the broad experimental and theoretical landscape spanning long-baseline, beam-dump, collider, and astrophysical experiments. This whitepaper was prepared as a part of the NuTau2021 Workshop
- …