167 research outputs found

    An embedding theorem for Hilbert categories

    Get PDF
    We axiomatically define (pre-)Hilbert categories. The axioms resemble those for monoidal Abelian categories with the addition of an involutive functor. We then prove embedding theorems: any locally small pre-Hilbert category whose monoidal unit is a simple generator embeds (weakly) monoidally into the category of pre-Hilbert spaces and adjointable maps, preserving adjoint morphisms and all finite (co)limits. An intermediate result that is important in its own right is that the scalars in such a category necessarily form an involutive field. In case of a Hilbert category, the embedding extends to the category of Hilbert spaces and continuous linear maps. The axioms for (pre-)Hilbert categories are weaker than the axioms found in other approaches to axiomatizing 2-Hilbert spaces. Neither enrichment nor a complex base field is presupposed. A comparison to other approaches will be made in the introduction.Comment: 24 page

    Operational theories and Categorical quantum mechanics

    Full text link
    A central theme in current work in quantum information and quantum foundations is to see quantum mechanics as occupying one point in a space of possible theories, and to use this perspective to understand the special features and properties which single it out, and the possibilities for alternative theories. Two formalisms which have been used in this context are operational theories, and categorical quantum mechanics. The aim of the present paper is to establish strong connections between these two formalisms. We show how models of categorical quantum mechanics have representations as operational theories. We then show how nonlocality can be formulated at this level of generality, and study a number of examples from this point of view, including Hilbert spaces, sets and relations, and stochastic maps. The local, quantum, and no-signalling models are characterized in these terms.Comment: 37 pages, updated bibliograph

    On discretization of C*-algebras

    Full text link
    The C*-algebra of bounded operators on the separable infinite-dimensional Hilbert space cannot be mapped to a W*-algebra in such a way that each unital commutative C*-subalgebra C(X) factors normally through ℓ∞(X)\ell^\infty(X). Consequently, there is no faithful functor discretizing C*-algebras to AW*-algebras, including von Neumann algebras, in this way.Comment: 5 pages. Please note that arXiv:1607.03376 supersedes this paper. It significantly strengthens the main results and includes positive results on discretization of C*-algebra

    Purity through factorisation

    Get PDF
    We give a construction that identifies the collection of pure processes (i.e. those which are deterministic, or without randomness) within a theory containing both pure and mixed processes. Working in the framework of symmetric monoidal categories, we define a pure subcategory. This definition arises elegantly from the categorical notion of a weak factorisation system. Our construction gives the expected result in several examples, both quantum and classical.Comment: In Proceedings QPL 2017, arXiv:1802.0973

    Pictures of complete positivity in arbitrary dimension

    Get PDF
    Two fundamental contributions to categorical quantum mechanics are presented. First, we generalize the CP-construction, that turns any dagger compact category into one with completely positive maps, to arbitrary dimension. Second, we axiomatize when a given category is the result of this construction.Comment: Final versio

    Limits in dagger categories

    Get PDF
    We develop a notion of limit for dagger categories, that we show is suitable in the following ways: it subsumes special cases known from the literature; dagger limits are unique up to unitary isomorphism; a wide class of dagger limits can be built from a small selection of them; dagger limits of a fixed shape can be phrased as dagger adjoints to a diagonal functor; dagger limits can be built from ordinary limits in the presence of polar decomposition; dagger limits commute with dagger colimits in many cases

    Reversible Monadic Computing

    Get PDF
    We extend categorical semantics of monadic programming to reversible computing, by considering monoidal closed dagger categories: the dagger gives reversibility, whereas closure gives higher-order expressivity. We demonstrate that Frobenius monads model the appropriate notion of coherence between the dagger and closure by reinforcing Cayley's theorem; by proving that effectful computations (Kleisli morphisms) are reversible precisely when the monad is Frobenius; by characterizing the largest reversible subcategory of Eilenberg-Moore algebras; and by identifying the latter algebras as measurements in our leading example of quantum computing. Strong Frobenius monads are characterized internally by Frobenius monoids
    • …
    corecore