908 research outputs found

    Seeing properties of an invisible object: Feature inheritance and shine-through

    Get PDF
    We characterize a class of spatio-temporal illusions with two complementary properties. Firstly, if a vernier stimulus is flashed for a short time on a monitor and is followed immediately by a grating, the latter can express features of the vernier, such as its offset, its orientation, or its motion (feature inheritance). Yet the vernier stimulus itself remains perceptually invisible. Secondly, the vernier can be rendered visible by presenting gratings with a larger number of elements (shine-through). Under these conditions, subjects perceive two independent " objects " each carrying their own features. Transition between these two domains can be effected by subtle changes in the spatio-temporal layout of the grating. This should allow psychophysicists and electrophysiologists to investigate feature binding in a precise and quantitative manner

    The effects of the global structure of the mask in visual backward masking

    Get PDF
    The visibility of a target can be strongly affected by a trailing mask. Research on visual backward masking has typically focused on the temporal characteristics of masking, whereas non-basic spatial aspects have received much less attention. However, recently, it has been demonstrated that the spatial layout is an important determinant of the strength of a mask. Here, we show that not only local but also global aspects of the mask's spatial layout affect target processing. Particularly, it is the regularity of the mask that plays an important role. Our findings are of importance for theoretical research, as well as for applications of visual masking

    Invisibility and interpretation

    Get PDF
    Invisibility is often thought to occur because of the low-level limitations of the visual system. For example, it is often assumed that backward masking renders a target invisible because the visual system is simply too slow to resolve the target and the mask separately. Here, we propose an alternative explanation in which invisibility is a goal rather than a limitation and occurs naturally when making sense out of the plethora of incoming information. For example, we present evidence that (in)visibility of an element can strongly depend on how it groups with other elements. Changing grouping changes visibility. In addition, we will show that features often just appear to be invisible but are in fact visible in a way the experimenter is not aware of

    Combining simultaneous with temporal masking

    Get PDF
    Simultaneous and temporal masking are two frequently used techniques in psychology and vision science. Although there are many studies and theories related to each masking technique, there are no systematic investigations of their mutual relationship, even though both techniques are often applied together. Here, the authors show that temporal masking can both undo and enhance the deteriorating effects of simultaneous masking depending on the stimulus onset asynchrony between the simultaneous and temporal masks. For the task and stimuli used in this study, temporal masking was largely unaffected by the properties of the simultaneous mask. In contrast, simultaneous masking seems to depend strongly on spatial grouping and was strongly affected by the properties of the temporal mask. These findings help to identify the nature of both temporal and simultaneous masking and promote understanding of the role of spatial and temporal grouping in visual perception

    Spatial grouping determines temporal integration

    Get PDF
    To make sense out of a continuously changing visual world, people need to integrate features across space and time. Despite more than a century of research, the mechanisms of features integration are still a matter of debate. To examine how temporal and spatial integration interact, the authors measured the amount of temporal fusion (a measure of temporal integration) for different spatial layouts. They found that spatial grouping by proximity and similarity can completely block temporal integration. Computer simulations with a simple neural network capture these findings very well, suggesting that the proposed spatial grouping operations may occur already at an early stage of visual information processing

    Spatial and temporal aspects of visual backward masking in children and young adolescents

    Get PDF
    We thank Marc Repnow for his help setting up the experiments. In addition, we thank two anonymous reviewers for their very thoughtful and helpful comments. This work was supported by the Volkswagen Foundation project “Between Europe and the Orient—A Focus on Research and Higher Education in/on Central Asia and the Caucasus” and by the VELUX Foundation project “Perception, Cognition and Healthy Brain Aging.”Peer reviewedPublisher PD

    Feature fusion reveals slow and fast visual memories

    Get PDF
    Although the visual system can achieve a coarse classification of its inputs in a relatively short time, the synthesis of qualia-rich and detailed percepts can take substantially more time. If these prolonged computations were to take place in a retinotopic space, moving objects would generate extensive smear. However, under normal viewing conditions, moving objects appear relatively sharp and clear, suggesting that a substantial part of visual short-term memory takes place at a nonretinotopic locus. By using a retinotopic feature fusion and a nonretinotopic feature attribution paradigm, we provide evidence for a relatively fast retinotopic buffer and a substantially slower nonretinotopic memory. We present a simple model that can account for the dynamics of these complementary memory processes. Taken together, our results indicate that the visual system can accomplish temporal integration of information while avoiding smear by breaking off sensory memory into fast and slow components that are implemented in retinotopic and nonretinotopic loci, respectively

    Crowding: Recent advances and perspectives.

    Get PDF

    Effects of biased feedback on learning and deciding in a vernier discrimination task

    Get PDF
    AbstractWe investigate the influence of biased feedback on decision and learning processes in a vernier discrimination task. Subjects adjust their decision criteria and hence their responses according to biased external feedback. However, they do not use learning processes to encode incorrectly classified stimuli. As soon as correct feedback is restored observers regain their original performance indicating an involvement of internal criteria. If the external feedback is switched off instead of being corrected, the rebound is less vigorous. The findings contradict predictions of supervised neural network models

    Spatial aspects of object formation revealed by a new illusion, shine-through

    Get PDF
    When a vernier stimulus is presented for a short time and followed by a grating comprising five straight lines, the vernier remains invisible but may bequeath its offset to the grating (feature inheritance). For more than seven grating elements, the vernier is rendered visible as a shine-through element. However, shine-through depends strongly on the spatio-temporal layout of the grating. Here, we show that spatially inhomogeneous gratings diminish shine-through and vernier discrimination. Even subtle deviations, in the range of a few minutes of arc, matter. However, longer presentation times of the vernier regenerate shine-through. Feature inheritance and shine-through may become a useful tool in investigating such different topics as time course of information processing, feature binding, attention, and masking
    corecore