4,834 research outputs found
Life Products of Stars
We attempt to document complete energetic transactions of stars in their
life. We calculate photon and neutrino energies that are produced from stars in
their each phase of evolution from 1 to 8 M_sun, using the state-of-the-art
stellar evolution code, tracing the evolution continuously from pre-main
sequence gravitational contraction to white dwarfs. We also catalogue
gravitational and thermal energies and helium, and heavier elements that are
stored in stars and those ejected into interstellar space in each evolutionary
phase.Comment: 26 pages, including 8 figures and 3 tables. Submitted to ApJ
The s-Process in Rotating Asymptotic Giant Branch Stars
(abridged) We model the nucleosynthesis during the thermal pulse phase of a
rotating, solar metallicity AGB star of 3M_sun. Rotationally induced mixing
during the thermal pulses produces a layer (~2E-5M_sun) on top of the CO-core
where large amounts of protons and C12 co-exist. We follow the abundance
evolution in this layer, in particular that of the neutron source C13 and of
the neutron poison N14. In our AGB model mixing persists during the entire
interpulse phase due to the steep angular velocity gradient at the
core-envelope interface. We follow the neutron production during the interpulse
phase, and find a resulting maximum neutron exposure of tau_max =0.04 mbarn^-1,
which is too small to produce any significant s-process. In parametric models,
we then investigate the combined effects of diffusive overshooting from the
convective envelope and rotationally induced mixing. Models with overshoot and
weaker interpulse mixing - as perhaps expected from more slowly rotating stars
- yield larger neutron exposures. We conclude that the incorporation of
rotationally induce mixing processes has important consequences for the
production of heavy elements in AGB stars. Through a distribution of initial
rotation rates it may lead to a natural spread in the neutron exposures
obtained in AGB stars of a given mass - as appears to be required by
observations. Our results suggest that both processes, diffusive overshoot and
rotational mixing, may be required to obtain a consistent description of the
s-process in AGB stars which fulfils all observational constraints. Finally, we
find that mixing due to rotation within our current framework does increase the
production of N15 in the partial mixing zone, however still falling short of
what seems required by observations.Comment: 50 pages, 13 figures, ApJ in press, tentatively scheduled for v593 n2
August 20, 200
Modeling lithium rich carbon stars in the Large Magellanic Cloud: an independent distance indicator ?
We present the first quantitative results explaining the presence in the
Large Magellanic Cloud of some asymptotic giant branch stars that share the
properties of lithium rich carbon stars. A self-consistent description of
time-dependent mixing, overshooting, and nuclear burning was required. We
identify a narrow range of masses and luminosities for this peculiar stars.
Comparison of these models with the luminosities of the few Li-rich C stars in
the Large Magellanic Cloud provides an independent distance indicator for the
LMCComment: 7 pages, 2 figure
Transcranial magnetic stimulation in depression--lessons from the multicentre trials
Looking at novelties and advances in medicine in particular in the treatment of major depressive disorder no principally new antidepressant treatment strategy has been established in clinical routine in the last fifty years. However, regarding the considerable issue of treatment resistance in depression, new therapeutic strategies are urgently required. In this context, repetitive transcranial magnetic stimulation above the dorsolateral prefrontal cortex has been proposed as a potential new treatment option for depression; furthermore, in October 2008 a first rTMS-device (NeuroStar TMS Therapy Systemâą) was approved by the FDA for the treatment of treatment resistant major refractory depression in adults. Yet, despite now nearly two decades of research in this field, no final answer concerning its validity for antidepressant treatment in the clinical practice is given. Numerous studies with small sample sizes and heterogeneous designs have been performed in this field yielding to different results. These were subjected to meta-analyses, assessing the antidepressant effect of rTMS, which are briefly summarized in this article. Further, multicentre-trials with larger numbers of patients were performed, which are presented and critically discussed here in more detail. This short review shall thus provide an overview of the current status of knowledge concerning rTMS in depression and it also provides some recommendations for future research in this field
Revealing the mid-infrared emission structure of IRAS 16594-4656 and IRAS 07027-7934
TIMMI2 diffraction-limited mid-infrared images of a multipolar
proto-planetary nebula IRAS 16594-4656 and a young [WC] elliptical planetary
nebula IRAS 07027-7934 are presented. Their dust shells are for the first time
resolved (only marginally in the case of IRAS 07027-7934) by applying the
Lucy-Richardson deconvolution algorithm to the data, taken under exceptionally
good seeing conditions (<0.5"). IRAS 16594-4656 exhibits a two-peaked
morphology at 8.6, 11.5 and 11.7 microns which is mainly attributed to emission
from PAHs. Our observations suggest that the central star is surrounded by a
toroidal structure observed edge-on with a radius of 0.4" (~640 AU at an
assumed distance of 1.6 kpc) with its polar axis at P.A.~80 degrees, coincident
with the orientation defined by only one of the bipolar outflows identified in
the HST optical images. We suggest that the material expelled from the central
source is currently being collimated in this direction and that the multiple
outflow formation has not been coeval. IRAS 07027-7934 shows a bright,
marginally extended emission (FWHM=0.3") in the mid-infrared with a slightly
elongated shape along the N-S direction, consistent with the morphology
detected by HST in the near-infrared. The mid-infrared emission is interpreted
as the result of the combined contribution of small, highly ionized PAHs and
relatively hot dust continuum. We propose that IRAS 07027-7934 may have
recently experienced a thermal pulse (likely at the end of the AGB) which has
produced a radical change in the chemistry of its central star.Comment: 35 pages, 8 figures (figures 1, 2, 4 and 6 are in low resolution)
accepted for publication in Ap
Evolution and Nucleosynthesis of Zero Metal Intermediate Mass Stars
New stellar models with mass ranging between 4 and 8 Mo, Z=0 and Y=0.23 are
presented. The models have been evolved from the pre Main Sequence up to the
Asymptotic Giant Branch (AGB). At variance with previous claims, we find that
these updated stellar models do experience thermal pulses in the AGB phase. In
particular we show that: a) in models with mass larger than 6 Mo, the second
dredge up is able to raise the CNO abundance in the envelope enough to allow a
"normal" AGB evolution, in the sense that the thermal pulses and the third
dredge up settle on; b) in models of lower mass, the efficiency of the CNO
cycle in the H-burning shell is controlled by the carbon produced locally via
the 3alpha reactions. Nevertheless the He-burning shell becomes thermally
unstable after the early AGB. The expansion of the overlying layers induced by
these weak He-shell flashes is not sufficient by itself to allow a deep
penetration of the convective envelope. However, immediately after that, the
maximum luminosity of the He flash is attained and a convective shell
systematically forms at the base of the H-rich envelope. The innermost part of
this convective shell probably overlaps the underlying C-rich region left by
the inter-shell convection during the thermal pulse, so that fresh carbon is
dredged up in a "hot" H-rich environment and a H flash occurs. This flash
favours the expansion of the outermost layers already started by the weak
thermal pulse and a deeper penetration of the convective envelope takes place.
Then, the carbon abundance in the envelope rises to a level high enough that
the further evolution of these models closely resembles that of more metal rich
AGB stars. These stars provide an important source of primary carbon and
nitrogen.Comment: 28 pages, 5 tables and 17 figures. Accepted for publication in Ap
Large-scale literature mining to assess the relation between anti-cancer drugs and cancer types
Background:There is a huge body of scientific literature describing the relation between tumor types and anti-cancer drugs. The vast amount of scientific literature makes it impossible for researchers and physicians to extract all relevant information manually.Methods:In order to cope with the large amount of literature we applied an automated text mining approach to assess the relations between 30 most frequent cancer types and 270 anti-cancer drugs. We applied two different approaches, a classical text mining based on named entity recognition and an AI-based approach employing word embeddings. The consistency of literature mining results was validated with 3 independent methods: first, using data from FDA approvals, second, using experimentally measured IC-50 cell line data and third, using clinical patient survival data.Results:We demonstrated that the automated text mining was able to successfully assess the relation between cancer types and anti-cancer drugs. All validation methods showed a good correspondence between the results from literature mining and independent confirmatory approaches. The relation between most frequent cancer types and drugs employed for their treatment were visualized in a large heatmap. All results are accessible in an interactive web-based knowledge base using the following link: https://knowledgebase.microdiscovery.de/heatmap.Conclusions:Our approach is able to assess the relations between compounds and cancer types in an automated manner. Both, cancer types and compounds could be grouped into different clusters. Researchers can use the inter-active knowledge base to inspect the presented results and follow their own research questions, for example the identification of novel indication areas for known drugs
The Three-Dimensional Mass Distribution in NGC 1700
A variety of modeling techniques is used with surface photometry from the
literature and recently acquired high-accuracy stellar kinematic data to
constrain the three-dimensional mass distribution in the luminous cuspy
elliptical galaxy NGC 1700. First, we model the radial velocity field and
photometry, and, using a Bayesian technique, estimate the triaxiality T and
short-to-long axis ratio c in five concentric annuli between approximately 1
and 3 effective radii. The results are completely consistent with T being
constant inside about 2.5 r_e (36 arcsec; 6.7/h kpc). Adding an assumption of
constant T as prior information gives an upper limit of T < 0.16 (95%
confidence); this relaxes to T < 0.22 if it is also assumed that there is
perfect alignment between the angular momentum and the galaxy's intrinsic short
axis. Near axisymmetry permits us then to use axisymmetric models to constrain
the radial mass profile. Using the Jeans (moment) equations, we demonstrate
that 2-integral, constant-M/L models cannot fit the data; but a 2-integral
model in which the cumulative enclosed M/L increases by a factor of roughly 2
from the center out to 12/h kpc can. Three-integral models constructed by
quadratic programming show that, in fact, no constant-M/L model is consistent
with the kinematics. Anisotropic 3-integral models with variable M/L, while not
uniquely establishing a minimum acceptable halo mass, imply, as do the moment
models, a cumulative M/L_B approximately 10 h at 12/h kpc. We conclude that NGC
1700 represents the best stellar dynamical evidence to date for dark matter in
elliptical galaxies.Comment: 26 pages, Latex, AASTeX v4.0, with 11 eps figures. To appear in The
Astronomical Journal, January 1999. Figures 1 and 3 are color but are
readable in b/
A Search for Nitrogen-Enhanced Metal-Poor Stars
Theoretical models of very metal-poor intermediate-mass Asymptotic Giant
Branch (AGB) stars predict a large overabundance of primary nitrogen. The very
metal-poor, carbon-enhanced, s-process-rich stars, which are thought to be the
polluted companions of now-extinct AGB stars, provide direct tests of the
predictions of these models. Recent studies of the carbon and nitrogen
abundances in metal-poor stars have focused on the most carbon-rich stars,
leading to a potential selection bias against stars that have been polluted by
AGB stars that produced large amounts of nitrogen, and hence have small [C/N]
ratios. We call these stars Nitrogen-Enhanced Metal-Poor (NEMP) stars, and
define them as having [N/Fe] > +0.5 and [C/N] < -0.5. In this paper, we report
on the [C/N] abundances of a sample of 21 carbon-enhanced stars, all but three
of which have [C/Fe] < +2.0. If NEMP stars were made as easily as
Carbon-Enhanced Metal-Poor (CEMP) stars, then we expected to find between two
and seven NEMP stars. Instead, we found no NEMP stars in our sample. Therefore,
this observational bias is not an important contributor to the apparent dearth
of N-rich stars. Our [C/N] values are in the same range as values reported
previously in the literature (-0.5 to +2.0), and all stars are in disagreement
with the predicted [C/N] ratios for both low-mass and high-mass AGB stars. We
suggest that the decrease in [C/N] from the low-mass AGB models is due to
enhanced extra-mixing, while the lack of NEMP stars may be caused by
unfavorable mass ratios in binaries or the difficulty of mass transfer in
binary systems with large mass ratios.Comment: 14 pages, 7 figures, to be published in Ap
- âŠ