1 research outputs found
Orientation-field models for polycrystalline solidification: grain coarsening and complex growth forms
We compare two versions of the phase-field theory for polycrystalline solidification, both relying on the concept of orientation
fields: one by Kobayashi et al. [Physica D 140 (2000) 141] and the other by Henry et al. [Phys. Rev. B 86 (2012) 054117]. Setting
the model parameters so that the grain boundary energies and the time scale of grain growth are comparable in the two models, we
first study the grain coarsening process including the limiting grain size distribution, and compare the results to those from experiments
on thin films, to the models of Hillert, and Mullins, and to predictions by multiphase-field theories. Next, following earlier
work by Gránásy et al. [Phys. Rev. Lett. 88 (2002) 206105; Phys. Rev. E 72 (2005) 011605], we extend the orientation field to the
liquid state, where the orientation field is made to fluctuate in time and space, and employ the model for describing of multi-dendritic
solidification, and polycrystalline growth, including the formation of “dizzy” dendrites disordered via the interaction with foreign
particles