185 research outputs found

    Potential role of the lipoxygenase derived lipid mediators in atherosclerosis: leukotrienes, lipoxins and resolvins

    Get PDF
    Atherogenesis is an inflammatory process with leukocytes infiltrating the arterial intima. The lipoxygenase pathways play a role in leukocyte recruitment through the generation of two classes of arachidonic acid lipid mediators, the leukotrienes and the lipoxins, and one class of omega-3 fatty acid metabolites, the resolvins. There is evidence from animal studies and human genetic studies that the leukotrienes and the enzymes necessary for their generation play a role in atherosclerosis, and possibly even in the development of the vulnerable plaque. Less is known about the effect of the anti-inflammatory lipid mediators in atherosclerosis, the lipoxins and the resolvins. Studies modulating the activity of an enzyme necessary for the production of these lipid mediators, 12/15-lipoxygenase, showed discrepant results in several animal models. Also, human genetic studies have not clearly dissected the effect of the enzyme on atherosclerosis. However, stable forms of the lipoxins and the resolvins protect animals from inflammatory diseases. Whether blocking the leukotrienes or applying anti-inflammatory lipoxins and resolvins will be effective in attenuating human atherosclerosis needs to be demonstrated in future studies. In this review, the biosynthesis of these lipid mediators, their biological effects and the evidence for their possible role in atherosclerosis are discussed with an emphasis on human disease. Clin Chem Lab Med 2010;48:1063-7

    CSF prostaglandin D synthase is reduced in excessive daytime sleepiness

    Get PDF
    Lipocalin-type prostaglandin D synthase (L-PGDS) is a brain enzyme, which produces prostaglandin D2, a substance with endogenous somnogenic effects. Using a standardized protocol for immunonephelometric determination of cerebrospinal fluid (CSF) L-PGDS levels, we show that CSF L-PGDS levels are significantly lower in 34 patients with excessive daytime sleepiness when compared with levels in 22 healthy controls. Thus, L-PGDS may represent the first neurochemical measure of excessive daytime sleepines

    Reference ranges for the polyethylene glycol (PEG) precipitation activity (%PPA) of eight routine enzyme activities

    Full text link
    Macroenzymes are high-molecular weight forms of enzymes whose presence in human sera can lead to non-pathological, elevated enzyme activities, resulting in further unnecessary clinical evaluation. Precipitation with polyethylene glycol (PEG) is an efficient method for removing macroforms from patient samples and can therefore be used for their identification. Cut-offs (99. Percentiles) for the PEG precipitation activity (%PPA) for eight routine enzyme activities were determined on Abbott's Alinity c, namely: AST (61%), ALT (70%), GGT (41%), LDH (45%), lipase (56%), ALP (17%), CK (36%) and PAMY (45%). Two macroforms (PAMY and CK) were then identified by gel filtration chromatography. We suggest that a %PPA above the enzyme-specific cut-off makes the presence of a macroform possible while a %PPA ≥80%, i.e. markedly above the cut-off, makes it very likely for all enzymes

    The Role of α-Linolenic Acid and Its Oxylipins in Human Cardiovascular Diseases

    Full text link
    α-linolenic acid (ALA) is an essential C-18 n-3 polyunsaturated fatty acid (PUFA), which can be elongated to longer n-3 PUFAs, such as eicosapentaenoic acid (EPA). These long-chain n-3 PUFAs have anti-inflammatory and pro-resolution effects either directly or through their oxylipin metabolites. However, there is evidence that the conversion of ALA to the long-chain PUFAs is limited. On the other hand, there is evidence in humans that supplementation of ALA in the diet is associated with an improved lipid profile, a reduction in the inflammatory biomarker C-reactive protein (CRP) and a reduction in cardiovascular diseases (CVDs) and all-cause mortality. Studies investigating the cellular mechanism for these beneficial effects showed that ALA is metabolized to oxylipins through the Lipoxygenase (LOX), the Cyclooxygenase (COX) and the Cytochrome P450 (CYP450) pathways, leading to hydroperoxy-, epoxy-, mono- and dihydroxylated oxylipins. In several mouse and cell models, it has been shown that ALA and some of its oxylipins, including 9- and 13-hydroxy-octadecatrienoic acids (9-HOTrE and 13-HOTrE), have immunomodulating effects. Taken together, the current literature suggests a beneficial role for diets rich in ALA in human CVDs, however, it is not always clear whether the described effects are attributable to ALA, its oxylipins or other substances present in the supplemented diets

    The c.-292C>T promoter polymorphism increases reticulocyte-type 15-lipoxygenase-1 activity and could be atheroprotective

    Get PDF
    Background: Reticulocyte-type 15-lipoxygenase-1 (ALOX15) has anti-inflammatory and inflammatory effects and is implicated in the development of asthma, arthritis and atherosclerosis. Previously, we screened the human ALOX15 gene for variations because genetic variability in ALOX15 might influence these diseases. We found a C>T substitution at position c.-292 in the ALOX15 promoter that created a novel binding site for the transcription factor SPI1 and increased ALOX15 mRNA levels in monocytes from c.-292CT heterozygous volunteers. Methods: To test whether the higher mRNA levels led to higher ALOX15 activity, we performed an activity assay and measured the arachidonic acid metabolite 15(S)-hydroxy-eicosatetraenoic acid [15(S)-HETE] by HPLC analysis. To test whether this polymorphism was associated with coronary artery disease (CAD), we investigated its association in a case-control study involving 498 Caucasians. Results: The c.-292C>T polymorphism was associated with higher enzyme activity in heterozygous carriers. Intriguingly, this polymorphism also showed a tendency to be protective against atherosclerosis. Conclusions: These results suggest that increased ALOX15 activity may attenuate inflammation, which could be caused by an increase in 15(S)-HETE and eventually by its metabolites, the lipoxins. Clin Chem Lab Med 2007;45:487-9

    Lipid Emulsion Containing High Amounts of n3 Fatty Acids (Omegaven) as Opposed to n6 Fatty Acids (Intralipid) Preserves Insulin Signaling and Glucose Uptake in Perfused Rat Hearts

    Full text link
    BACKGROUND: It is currently unknown whether acute exposure to n3 fatty acid–containing fish oil–based lipid emulsion Omegaven as opposed to the n6 fatty acid–containing soybean oil–based lipid emulsion Intralipid is more favorable in terms of insulin signaling and glucose uptake in the intact beating heart. METHODS: Sprague–Dawley rat hearts were perfused in the working mode for 90 minutes in the presence of 11 mM glucose and 1.2 mM palmitate bound to albumin, the first 30 minutes without insulin followed by 60 minutes with insulin (50 mU/L). Hearts were randomly allocated to 100 µM Intralipid, 100 µM Omegaven, or no emulsion (insulin treatment alone) for 60 minutes. Glycolysis and glycogen synthesis were measured with the radioactive tracer [5-3H]glucose, and glucose uptake was calculated. Phosphorylation of protein phosphatase 2A (PP2A), protein kinase Akt, and phosphofructokinase (PFK)-2 was measured by immunoblotting. Glycolytic metabolites were determined by enzymatic assays. Mass spectrometry was used to establish acylcarnitine profiles. Nuclear factor κB (NFκB) nuclear translocation served as reactive oxygen species (ROS) biosensor. RESULTS: Insulin-mediated glucose uptake was decreased by Intralipid (4.9 ± 0.4 vs 3.7 ± 0.3 μmol/gram dry heart weight [gdw]·min; P = .047) due to both reduced glycolysis and glycogen synthesis. In contrast, Omegaven treatment did not affect insulin-mediated glycolysis or glycogen synthesis and thus preserved glucose uptake (5.1 ± 0.3 vs 4.9 ± 0.4 μmol/gdw·min; P = .94). While Intralipid did not affect PP2A phosphorylation status, Omegaven resulted in significantly enhanced tyrosine phosphorylation and inhibition of PP2A. This was accompanied by increased selective threonine phosphorylation of Akt and the downstream target PFK-2 at S483. PFK-1 activity was increased when compared with Intralipid as measured by the ratio of fructose 1,6-bisphosphate to fructose 6-phosphate (Omegaven 0.60 ± 0.11 versus Intralipid 0.47 ± 0.09; P = .023), consistent with increased formation of fructose 2,6-bisphosphate by PFK2, its main allosteric activator. Omegaven lead to accumulation of acylcarnitines and fostered a prooxidant response as evidenced by NFκB nuclear translocation and activation. CONCLUSIONS: Omegaven as opposed to Intralipid preserves glucose uptake via the PP2A–Akt–PFK pathway in intact beating hearts. n3 fatty acids decelerate β-oxidation causing accumulation of acylcarnitine species and a prooxidant response, which likely inhibits redox-sensitive PP2A and thus preserves insulin signaling and glucose uptake
    • …
    corecore