127 research outputs found

    On Computing Centroids According to the p-Norms of Hamming Distance Vectors

    Get PDF
    In this paper we consider the p-Norm Hamming Centroid problem which asks to determine whether some given strings have a centroid with a bound on the p-norm of its Hamming distances to the strings. Specifically, given a set S of strings and a real k, we consider the problem of determining whether there exists a string s^* with (sum_{s in S} d^{p}(s^*,s))^(1/p) <=k, where d(,) denotes the Hamming distance metric. This problem has important applications in data clustering and multi-winner committee elections, and is a generalization of the well-known polynomial-time solvable Consensus String (p=1) problem, as well as the NP-hard Closest String (p=infty) problem. Our main result shows that the problem is NP-hard for all fixed rational p > 1, closing the gap for all rational values of p between 1 and infty. Under standard complexity assumptions the reduction also implies that the problem has no 2^o(n+m)-time or 2^o(k^(p/(p+1)))-time algorithm, where m denotes the number of input strings and n denotes the length of each string, for any fixed p > 1. The first bound matches a straightforward brute-force algorithm. The second bound is tight in the sense that for each fixed epsilon > 0, we provide a 2^(k^(p/((p+1))+epsilon))-time algorithm. In the last part of the paper, we complement our hardness result by presenting a fixed-parameter algorithm and a factor-2 approximation algorithm for the problem

    Parameterized Complexity of Critical Node Cuts

    Get PDF
    We consider the following natural graph cut problem called Critical Node Cut (CNC): Given a graph GG on nn vertices, and two positive integers kk and xx, determine whether GG has a set of kk vertices whose removal leaves GG with at most xx connected pairs of vertices. We analyze this problem in the framework of parameterized complexity. That is, we are interested in whether or not this problem is solvable in f(κ)⋅nO(1)f(\kappa) \cdot n^{O(1)} time (i.e., whether or not it is fixed-parameter tractable), for various natural parameters κ\kappa. We consider four such parameters: - The size kk of the required cut. - The upper bound xx on the number of remaining connected pairs. - The lower bound yy on the number of connected pairs to be removed. - The treewidth ww of GG. We determine whether or not CNC is fixed-parameter tractable for each of these parameters. We determine this also for all possible aggregations of these four parameters, apart from w+kw+k. Moreover, we also determine whether or not CNC admits a polynomial kernel for all these parameterizations. That is, whether or not there is an algorithm that reduces each instance of CNC in polynomial time to an equivalent instance of size κO(1)\kappa^{O(1)}, where κ\kappa is the given parameter

    Parameterized Two-Player Nash Equilibrium

    Full text link
    We study the computation of Nash equilibria in a two-player normal form game from the perspective of parameterized complexity. Recent results proved hardness for a number of variants, when parameterized by the support size. We complement those results, by identifying three cases in which the problem becomes fixed-parameter tractable. These cases occur in the previously studied settings of sparse games and unbalanced games as well as in the newly considered case of locally bounded treewidth games that generalizes both these two cases

    Parameterized Complexity Dichotomy for Steiner Multicut

    Get PDF
    The Steiner Multicut problem asks, given an undirected graph G, terminals sets T1,...,Tt ⊆\subseteq V(G) of size at most p, and an integer k, whether there is a set S of at most k edges or nodes s.t. of each set Ti at least one pair of terminals is in different connected components of G \ S. This problem generalizes several graph cut problems, in particular the Multicut problem (the case p = 2), which is fixed-parameter tractable for the parameter k [Marx and Razgon, Bousquet et al., STOC 2011]. We provide a dichotomy of the parameterized complexity of Steiner Multicut. That is, for any combination of k, t, p, and the treewidth tw(G) as constant, parameter, or unbounded, and for all versions of the problem (edge deletion and node deletion with and without deletable terminals), we prove either that the problem is fixed-parameter tractable or that the problem is hard (W[1]-hard or even (para-)NP-complete). We highlight that: - The edge deletion version of Steiner Multicut is fixed-parameter tractable for the parameter k+t on general graphs (but has no polynomial kernel, even on trees). We present two proofs: one using the randomized contractions technique of Chitnis et al, and one relying on new structural lemmas that decompose the Steiner cut into important separators and minimal s-t cuts. - In contrast, both node deletion versions of Steiner Multicut are W[1]-hard for the parameter k+t on general graphs. - All versions of Steiner Multicut are W[1]-hard for the parameter k, even when p=3 and the graph is a tree plus one node. Hence, the results of Marx and Razgon, and Bousquet et al. do not generalize to Steiner Multicut. Since we allow k, t, p, and tw(G) to be any constants, our characterization includes a dichotomy for Steiner Multicut on trees (for tw(G) = 1), and a polynomial time versus NP-hardness dichotomy (by restricting k,t,p,tw(G) to constant or unbounded).Comment: As submitted to journal. This version also adds a proof of fixed-parameter tractability for parameter k+t using the technique of randomized contraction

    Hierarchies of Inefficient Kernelizability

    Full text link
    The framework of Bodlaender et al. (ICALP 2008) and Fortnow and Santhanam (STOC 2008) allows us to exclude the existence of polynomial kernels for a range of problems under reasonable complexity-theoretical assumptions. However, there are also some issues that are not addressed by this framework, including the existence of Turing kernels such as the "kernelization" of Leaf Out Branching(k) into a disjunction over n instances of size poly(k). Observing that Turing kernels are preserved by polynomial parametric transformations, we define a kernelization hardness hierarchy, akin to the M- and W-hierarchy of ordinary parameterized complexity, by the PPT-closure of problems that seem likely to be fundamentally hard for efficient Turing kernelization. We find that several previously considered problems are complete for our fundamental hardness class, including Min Ones d-SAT(k), Binary NDTM Halting(k), Connected Vertex Cover(k), and Clique(k log n), the clique problem parameterized by k log n

    A Note on Clustering Aggregation

    Full text link
    We consider the clustering aggregation problem in which we are given a set of clusterings and want to find an aggregated clustering which minimizes the sum of mismatches to the input clusterings. In the binary case (each clustering is a bipartition) this problem was known to be NP-hard under Turing reduction. We strengthen this result by providing a polynomial-time many-one reduction. Our result also implies that no 2o(n)⋅∣I∣O(1)2^{o(n)} \cdot |I|^{O(1)}-time algorithm exists for any clustering instance II with nn elements, unless the Exponential Time Hypothesis fails. On the positive side, we show that the problem is fixed-parameter tractable with respect to the number of input clusterings
    • …
    corecore