525 research outputs found
Four-dimensional differential equations for the leading divergences of dimensionally-regulated loop integrals
We invent an automated method for computing the divergent part of Feynman
integrals in dimensional regularization. Our method exploits simplifications
from four-dimensional integration-by-parts identities. Leveraging algorithms
from the literature, we show how to find simple differential equations for the
divergent part of Feynman integrals. We illustrate the method by an application
to heavy quark effective theory at three loops.Comment: second version with minor change
Correlation functions, null polygonal Wilson loops, and local operators
We consider the ratio of the correlation function of n+1 local operators over
the correlator of the first n of these operators in planar N=4 super-Yang-Mills
theory, and consider the limit where the first n operators become pairwise null
separated. By studying the problem in twistor space, we prove that this is
equivalent to the correlator of a n-cusp null polygonal Wilson loop with the
remaining operator in general position, normalized by the expectation value of
the Wilson loop itself, as recently conjectured by Alday, Buchbinder and
Tseytlin. Twistor methods also provide a BCFW-like recursion relation for such
correlators. Finally, we study the natural extension where n operators become
pairwise null separated with k operators in general position. As an example, we
perform an analysis of the resulting correlator for k=2 and discuss some of the
difficulties associated to fixing the correlator completely in the strong
coupling regime.Comment: 34 pages, 6 figures. v2: typos corrected and references added; v3:
published versio
Gene expression drives the evolution of dominance.
Dominance is a fundamental concept in molecular genetics and has implications for understanding patterns of genetic variation, evolution, and complex traits. However, despite its importance, the degree of dominance in natural populations is poorly quantified. Here, we leverage multiple mating systems in natural populations of Arabidopsis to co-estimate the distribution of fitness effects and dominance coefficients of new amino acid changing mutations. We find that more deleterious mutations are more likely to be recessive than less deleterious mutations. Further, this pattern holds across gene categories, but varies with the connectivity and expression patterns of genes. Our work argues that dominance arises as a consequence of the functional importance of genes and their optimal expression levels
Associations of Early Childhood Manganese and Lead Coexposure with Neurodevelopment
Background: Most toxicologic studies focus on a single agent, although this does not reflect real-world scenarios in which humans are exposed to multiple chemicals
On super form factors of half-BPS operators in N=4 super Yang-Mills
Open Access, (c) The Authors. Article funded by SCOAP3. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
Correlation function of null polygonal Wilson loops with local operators
We consider the correlator of a light-like polygonal Wilson loop
with n cusps with a local operator (like the dilaton or the chiral primary
scalar) in planar N =4 super Yang-Mills theory. As a consequence of conformal
symmetry, the main part of such correlator is a function F of 3n-11 conformal
ratios. The first non-trivial case is n=4 when F depends on just one conformal
ratio \zeta. This makes the corresponding correlator one of the simplest
non-trivial observables that one would like to compute for generic values of
the `t Hooft coupling \lambda. We compute F(\zeta,\lambda) at leading order in
both the strong coupling regime (using semiclassical AdS5 x S5 string theory)
and the weak coupling regime (using perturbative gauge theory). Some results
are also obtained for polygonal Wilson loops with more than four edges.
Furthermore, we also discuss a connection to the relation between a correlator
of local operators at null-separated positions and cusped Wilson loop suggested
in arXiv:1007.3243.Comment: 36 pages, 2 figure
Inference of population splits and mixtures from genome-wide allele frequency data
Many aspects of the historical relationships between populations in a species
are reflected in genetic data. Inferring these relationships from genetic data,
however, remains a challenging task. In this paper, we present a statistical
model for inferring the patterns of population splits and mixtures in multiple
populations. In this model, the sampled populations in a species are related to
their common ancestor through a graph of ancestral populations. Using
genome-wide allele frequency data and a Gaussian approximation to genetic
drift, we infer the structure of this graph. We applied this method to a set of
55 human populations and a set of 82 dog breeds and wild canids. In both
species, we show that a simple bifurcating tree does not fully describe the
data; in contrast, we infer many migration events. While some of the migration
events that we find have been detected previously, many have not. For example,
in the human data we infer that Cambodians trace approximately 16% of their
ancestry to a population ancestral to other extant East Asian populations. In
the dog data, we infer that both the boxer and basenji trace a considerable
fraction of their ancestry (9% and 25%, respectively) to wolves subsequent to
domestication, and that East Asian toy breeds (the Shih Tzu and the Pekingese)
result from admixture between modern toy breeds and "ancient" Asian breeds.
Software implementing the model described here, called TreeMix, is available at
http://treemix.googlecode.comComment: 28 pages, 6 figures in main text. Attached supplement is 22 pages, 15
figures. This is an updated version of the preprint available at
http://precedings.nature.com/documents/6956/version/
From Coherent Modes to Turbulence and Granulation of Trapped Gases
The process of exciting the gas of trapped bosons from an equilibrium initial
state to strongly nonequilibrium states is described as a procedure of symmetry
restoration caused by external perturbations. Initially, the trapped gas is
cooled down to such low temperatures, when practically all atoms are in
Bose-Einstein condensed state, which implies the broken global gauge symmetry.
Excitations are realized either by imposing external alternating fields,
modulating the trapping potential and shaking the cloud of trapped atoms, or it
can be done by varying atomic interactions by means of Feshbach resonance
techniques. Gradually increasing the amount of energy pumped into the system,
which is realized either by strengthening the modulation amplitude or by
increasing the excitation time, produces a series of nonequilibrium states,
with the growing fraction of atoms for which the gauge symmetry is restored. In
this way, the initial equilibrium system, with the broken gauge symmetry and
all atoms condensed, can be excited to the state, where all atoms are in the
normal state, with completely restored gauge symmetry. In this process, the
system, starting from the regular superfluid state, passes through the states
of vortex superfluid, turbulent superfluid, heterophase granular fluid, to the
state of normal chaotic fluid in turbulent regime. Both theoretical and
experimental studies are presented.Comment: Latex file, 25 pages, 4 figure
Aluminium-induced ion transport in Arabidopsis: the relationship between Al tolerance and root ion flux
Aluminium (Al) rhizotoxicity coincides with low pH; however, it is unclear whether plant tolerance to these two factors is controlled by the same mechanism. To address this question, the Al-resistant alr104 mutant, two Al-sensitive mutants (als3 and als5), and wild-type Arabidopsis thaliana were compared in long-term exposure (solution culture) and in short-term exposure experiments (H+ and K+ fluxes, rhizosphere pH, and plasma membrane potential, Em). Based on biomass accumulation, als5 and alr104 showed tolerance to low pH, whereas alr104 was tolerant to the combined low-pH/Al treatment. The sensitivity of the als5 and als3 mutants to the Al stress was similar. The Al-induced decrease in H+ influx at the distal elongation zone (DEZ) and Al-induced H+ efflux at the mature zone (MZ) were higher in the Al-sensitive mutants (als3 and als5) than in the wild type and the alr104 mutant. Under combined low-pH/Al treatment, alr104 and the wild type had depolarized plasma membranes for the entire 30 min measurement period, whereas in the Al-sensitive mutants (als3 and als5), initial depolarization to around –60 mV became hyperpolarization at –110 mV after 20 min. At the DEZ, the Em changes corresponded to the changes in K+ flux: K+ efflux was higher in alr104 and the wild type than in the als3 and als5 mutants. In conclusion, Al tolerance in the alr104 mutant correlated with Em depolarization, higher K+ efflux, and higher H+ influx, which led to a more alkaline rhizosphere under the combined low-pH/Al stress. Low-pH tolerance (als5) was linked to higher H+ uptake under low-pH stress, which was abolished by Al exposure
- …