865 research outputs found

    Gibbs flow for approximate transport with applications to Bayesian computation

    Get PDF
    Let π0\pi_{0} and π1\pi_{1} be two distributions on the Borel space (Rd,B(Rd))(\mathbb{R}^{d},\mathcal{B}(\mathbb{R}^{d})). Any measurable function T:RdRdT:\mathbb{R}^{d}\rightarrow\mathbb{R}^{d} such that Y=T(X)π1Y=T(X)\sim\pi_{1} if Xπ0X\sim\pi_{0} is called a transport map from π0\pi_{0} to π1\pi_{1}. For any π0\pi_{0} and π1\pi_{1}, if one could obtain an analytical expression for a transport map from π0\pi_{0} to π1\pi_{1}, then this could be straightforwardly applied to sample from any distribution. One would map draws from an easy-to-sample distribution π0\pi_{0} to the target distribution π1\pi_{1} using this transport map. Although it is usually impossible to obtain an explicit transport map for complex target distributions, we show here how to build a tractable approximation of a novel transport map. This is achieved by moving samples from π0\pi_{0} using an ordinary differential equation with a velocity field that depends on the full conditional distributions of the target. Even when this ordinary differential equation is time-discretized and the full conditional distributions are numerically approximated, the resulting distribution of mapped samples can be efficiently evaluated and used as a proposal within sequential Monte Carlo samplers. We demonstrate significant gains over state-of-the-art sequential Monte Carlo samplers at a fixed computational complexity on a variety of applications.Comment: Significantly revised with new methodology and numerical example

    Controlled Sequential Monte Carlo

    Full text link
    Sequential Monte Carlo methods, also known as particle methods, are a popular set of techniques for approximating high-dimensional probability distributions and their normalizing constants. These methods have found numerous applications in statistics and related fields; e.g. for inference in non-linear non-Gaussian state space models, and in complex static models. Like many Monte Carlo sampling schemes, they rely on proposal distributions which crucially impact their performance. We introduce here a class of controlled sequential Monte Carlo algorithms, where the proposal distributions are determined by approximating the solution to an associated optimal control problem using an iterative scheme. This method builds upon a number of existing algorithms in econometrics, physics, and statistics for inference in state space models, and generalizes these methods so as to accommodate complex static models. We provide a theoretical analysis concerning the fluctuation and stability of this methodology that also provides insight into the properties of related algorithms. We demonstrate significant gains over state-of-the-art methods at a fixed computational complexity on a variety of applications

    A Multilevel Approach for Stochastic Nonlinear Optimal Control

    Full text link
    We consider a class of finite time horizon nonlinear stochastic optimal control problem, where the control acts additively on the dynamics and the control cost is quadratic. This framework is flexible and has found applications in many domains. Although the optimal control admits a path integral representation for this class of control problems, efficient computation of the associated path integrals remains a challenging Monte Carlo task. The focus of this article is to propose a new Monte Carlo approach that significantly improves upon existing methodology. Our proposed methodology first tackles the issue of exponential growth in variance with the time horizon by casting optimal control estimation as a smoothing problem for a state space model associated with the control problem, and applying smoothing algorithms based on particle Markov chain Monte Carlo. To further reduce computational cost, we then develop a multilevel Monte Carlo method which allows us to obtain an estimator of the optimal control with O(ϵ2)\mathcal{O}(\epsilon^2) mean squared error with a computational cost of O(ϵ2log(ϵ)2)\mathcal{O}(\epsilon^{-2}\log(\epsilon)^2). In contrast, a computational cost of O(ϵ3)\mathcal{O}(\epsilon^{-3}) is required for existing methodology to achieve the same mean squared error. Our approach is illustrated on two numerical examples, which validate our theory

    Diffusion Schr\"odinger Bridge with Applications to Score-Based Generative Modeling

    Full text link
    Progressively applying Gaussian noise transforms complex data distributions to approximately Gaussian. Reversing this dynamic defines a generative model. When the forward noising process is given by a Stochastic Differential Equation (SDE), Song et al. (2021) demonstrate how the time inhomogeneous drift of the associated reverse-time SDE may be estimated using score-matching. A limitation of this approach is that the forward-time SDE must be run for a sufficiently long time for the final distribution to be approximately Gaussian. In contrast, solving the Schr\"odinger Bridge problem (SB), i.e. an entropy-regularized optimal transport problem on path spaces, yields diffusions which generate samples from the data distribution in finite time. We present Diffusion SB (DSB), an original approximation of the Iterative Proportional Fitting (IPF) procedure to solve the SB problem, and provide theoretical analysis along with generative modeling experiments. The first DSB iteration recovers the methodology proposed by Song et al. (2021), with the flexibility of using shorter time intervals, as subsequent DSB iterations reduce the discrepancy between the final-time marginal of the forward (resp. backward) SDE with respect to the prior (resp. data) distribution. Beyond generative modeling, DSB offers a widely applicable computational optimal transport tool as the continuous state-space analogue of the popular Sinkhorn algorithm (Cuturi, 2013).Comment: 58 pages, 18 figures (correction of Proposition 5

    An invitation to sequential Monte Carlo samplers

    Get PDF
    Sequential Monte Carlo samplers provide consistent approximations of sequences of probability distributions and of their normalizing constants, via particles obtained with a combination of importance weights and Markov transitions. This article presents this class of methods and a number of recent advances, with the goal of helping statisticians assess the applicability and usefulness of these methods for their purposes. Our presentation emphasizes the role of bridging distributions for computational and statistical purposes. Numerical experiments are provided on simple settings such as multivariate Normals, logistic regression and a basic susceptible-infected-recovered model, illustrating the impact of the dimension, the ability to perform inference sequentially and the estimation of normalizing constants.Comment: review article, 34 pages, 10 figure
    corecore