34,434 research outputs found
Sonic boom measurement test plan for Space Shuttle STS-4 reentry
Formal documentation for measurement procedures and system specifications, and general information relating to the Space Shuttle STS-4 Sonic Boom Measurement Program are supplied. This test plan is designed to provide information, guidance, and assignment of responsibilities for the acquisition of sonic boom and atmospheric measurements, timing correlation, communications and other necessary supporting tasks. Specifically included are details such as mobile data acquisition station locations, measurement systems calibration levels, predicted sonic boom overpressure levels, overpressure level assignment for each data acquisition station, data recording times on and off, universal coordinated time, and measurement system descriptions
A comparison of measured and theoretical predictions for STS ascent and entry sonic booms
Sonic boom measurements have been obtained during the flights of STS-1 through 5. During STS-1, 2, and 4, entry sonic boom measurements were obtained and ascent measurements were made on STS-5. The objectives of this measurement program were (1) to define the sonic boom characteristics of the Space Transportation System (STS), (2) provide a realistic assessment of the validity of xisting theoretical prediction techniques, and (3) establish a level of confidence for predicting future STS configuration sonic boom environments. Detail evaluation and reporting of the results of this program are in progress. This paper will address only the significant results, mainly those data obtained during the entry of STS-1 at Edwards Air Force Base (EAFB), and the ascent of STS-5 from Kennedy Space Center (KSC). The theoretical prediction technique employed in this analysis is the so called Thomas Program. This prediction technique is a semi-empirical method that required definition of the near field signatures, detailed trajectory characteristics, and the prevailing meteorological characteristics as an input. This analytical procedure then extrapolates the near field signatures from the flight altitude to an altitude consistent with each measurement location
Study of the effect of scattering from turbid water on the polarization of a laser beam
A Monte Carlo simulation method was used to determine the effect of scattering from turbid water on the polarization of a backscattered beam of laser light. The relationship between the polarization and the type and amount of suspended particulates in the water was investigated
Sonic-boom measurements in the focus region during the ascent of Apollo 17
Sonic-boom pressure signatures recorded during the ascent phase of Apollo 17 are presented. The measurements were obtained onboard six U.S. Navy ships positioned along the ground track of the spacecraft vehicle in the area of expected focus resulting from the flight path and acceleration of the vehicle. Tracings of the measured signatures are presented along with values of the maximum positive overpressure, positive impulse, signature duration, and bowshock rise time. Also included are brief descriptions of the ships and their location, the deployment of the sonic-boom instrumentation, flight profiles and operating conditions for the launch vehicle and spacecraft, surface-weather and sea-state information at the measuring sites, and high-altitude weather information for the general measurement areas. Comparisons of the measured and predicted sonic-boom overpressures for the Apollo 17 mission are presented. The measured data are also compared with data from the Apollo 15 and 16 missions and data from flight test programs of various aircraft
Sonic-boom ground pressure measurements from the launch and reentry of Apollo 16
Sonic-boom pressure signatures recorded during the launch and reentry phases of the Apollo 16 mission are presented. Five measurements were obtained along the vehicle ground track: 69 km (37.3 n. mi.) 92 km (49.8 n. mi.), and 130 km (70.3 n. mi.) down range from the launch site during ascent, and at 185 km (100 n. mi.) and approximately 5.5 km (3 n. mi.) from the splash-down point during reentry. Tracings of the measured signatures are included along with values of the overpressure, impulse, time duration, and rise times. Also included are brief descriptions of the launch and recovery test areas in which the measurements were obtained, the sonic-boom instrumentation deployment, flight profiles, and operating conditions for the launch vehicle and spacecraft, surface weather information at the measuring sites, and high-altitude weather information for the general measurement areas. Comparisons of the sonic-boom overpressures from Apollo 15 and 16 along with those from current aircraft are also presented
Variability in airplane noise measurements
Aircraft position and meteorological effects on accuracy of acoustic measurements for turbojet engine
Correlation of predicted and measured sonic boom characteristics from the reentry of STS-1 orbiter
Characteristics from sonic boom pressure signatures recorded at 11 locations during reentry of the Space Shuttle Orbiter Columbia are correlated with characteristics of wind tunnel signatures extrapolated from flight altitudes for Mach numbers ranging from 1.23 to 5.87. The flight pressure signature were recorded by microphones positioned at two levels near the descent groundtrack along the California corridor. The wind tunnel signatures used in theoretical predictions were measured using a 0.0041-scale model Orbiter. The mean difference between all measured and predicted overpressures is 12 percent from measured levels. With one exception, the flight signatures are very similar to theoretical n-waves
Results of the flight noise measurement program using a standard and modified SH-3A helicopter
A field noise measurement program has been conducted using both a standard SH-3A helicopter and an SH-3A helicopter modified to reduce external noise levels. Modifications included reducing rotor speed, increasing the number of rotor blades, modifying the blade-tip shapes, and acoustically treating the engine air intakes and exhaust. The purpose of this study was to document the noise characteristics recorded on the ground of each helicopter during flyby, hover, landing, and take-off operations. Based on an analysis of the measured results, the average of the overhead, overall, ontrack noise levels was approximately 4 db lower for the modified helicopter than for the standard helicopter. The improved in-flight noise characteristics, and associated small footprint areas and time durations, were judged to be mainly due to tail-rotor noise reductions. The noise reductions were obtained at the expense of required power increases at airspeeds greater than 70 knots for the modified helicopter
Results of the noise measurement program on a standard and modified OH-6A helicopter
A field noise measurement program has been conducted on a standard OH-6A helicopter and one that had been modified by reducing the rotor speed, altering rotor tip shape, and treating the engine exhaust and inlet to reduce the external noise levels. The modifications consisted of extensive aircraft design changes resulting in substantial noise reductions following state-of-art noise reduction techniques. The purpose of this study was to document the ground noise characteristics of each helicopter during flyover, hover, landing, and take-off operations. Based on an analysis of the measured results, the average of the overall on-track noise levels of the final modified helicopter was approximately 14 db lower than that for the standard helicopter. Narrow-band-spectra data of the hovering helicopter show a reduction in the overall noise due to the reductions achieved for the lifting main and antitorque tail rotor, engine exhaust, and gear box noise for the modified helicopter. The noise results of the test program are found to correlate generally with noise measurements made previously on this type of aircraft
Flyover noise characteristics of a tilt-wing V/STOL aircraft (XC-142A)
A field noise measurement investigation was conducted during the flight testing of an XC-142A tilt-wing V/STOL aircraft to define its external noise characteristics. Measured time histories of overall sound pressure level show that noise levels are higher at lower airspeeds and decrease with increased speed up to approximately 160 knots. The primary noise sources were the four high-speed, main propellers. Flyover-noise time histories calculated by existing techniques for propeller noise prediction are in reasonable agreement with the experimental data
- …