209 research outputs found

    DeWitt Wallace Library Annual Report 2013-2014

    Get PDF
    Summary of library and media services activities for 2013-201

    Gestational Weight Gain and Body Mass Index in Children: Results from Three German Cohort Studies

    Get PDF
    Previous studies suggested potential priming effects of gestational weight gain (GWG) on offspring's body composition in later life. However, consistency of these effects in normal weight, overweight and obese mothers is less clear. We combined the individual data of three German cohorts and assessed associations of total and excessive GWG (as defined by criteria of the Institute of Medicine) with offspring's mean body mass index (BMI) standard deviation scores (SDS) and overweight at the age of 5-6 years (total: n = 6,254). Quantile regression was used to examine potentially different effects on different parts of the BMI SDS distribution. All models were adjusted for birth weight, maternal age and maternal smoking during pregnancy and stratified by maternal pre-pregnancy weight status. In adjusted models, positive associations of total and excessive GWG with mean BMI SDS and overweight were observed only in children of non- overweight mothers. For example, excessive GWG was associated with a mean increase of 0.08 (95% CI: 0.01, 0.15) units of BMI SDS (0.13 (0.02, 0.24) kg/m(2) of 'real' BMI) in children of normal-weight mothers. The effects of total and excessive GWG on BMI SDS increased for higher- BMI children of normal-weight mothers. Increased GWG is likely to be associated with overweight in offspring of non-overweight mothers

    Global transpiration data from sap flow measurements : the SAPFLUXNET database

    Get PDF
    Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land-atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80 % of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56 % of the datasets. Many datasets contain data for species that make up 90 % or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (https://doi.org/10.5281/zenodo.3971689; Poyatos et al., 2020a). The "sapfluxnetr" R package - designed to access, visualize, and process SAPFLUXNET data - is available from CRAN.Peer reviewe

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    stairs and fire

    Get PDF

    Discutindo a educação ambiental no cotidiano escolar: desenvolvimento de projetos na escola formação inicial e continuada de professores