2,973 research outputs found
Elastic response of filamentous networks with compliant crosslinks
Experiments have shown that elasticity of disordered filamentous networks
with compliant crosslinks is very different from networks with rigid
crosslinks. Here, we model and analyze filamentous networks as a collection of
randomly oriented rigid filaments connected to each other by flexible
crosslinks that are modeled as worm-like chains. For relatively large
extensions we allow for enthalpic stretching of crosslinks' backbones. We show
that for sufficiently high crosslink density, the network linear elastic
response is affine on the scale of the filaments' length. The nonlinear regime
can become highly nonaffine and is characterized by a divergence of the elastic
modulus at finite strain. In contrast to the prior predictions, we do not find
an asymptotic regime in which the differential elastic modulus scales linearly
with the stress, although an approximate linear dependence can be seen in a
transition from entropic to enthalpic regimes. We discuss our results in light
of the recent experiments.Comment: 10 pages, 11 figure
Quantum key distribution using non-classical photon number correlations in macroscopic light pulses
We propose a new scheme for quantum key distribution using macroscopic
non-classical pulses of light having of the order 10^6 photons per pulse.
Sub-shot-noise quantum correlation between the two polarization modes in a
pulse gives the necessary sensitivity to eavesdropping that ensures the
security of the protocol. We consider pulses of two-mode squeezed light
generated by a type-II seeded parametric amplification process. We analyze the
security of the system in terms of the effect of an eavesdropper on the bit
error rates for the legitimate parties in the key distribution system. We also
consider the effects of imperfect detectors and lossy channels on the security
of the scheme.Comment: Modifications:added new eavesdropping attack, added more references
Submitted to Physical Review A [email protected]
Orbitally Driven Spin Pairing in the 3D Non-Magnetic Mott Insulator BaVS3: Evidence from Single Crystal Studies
Static electrical and magnetic properties of single crystal BaVS_3 were
measured over the structural (T_S=240K), metal-insulator (T_MI=69K), and
suspected orbital ordering (T_X=30K) transitions. The resistivity is almost
isotropic both in the metallic and insulating states. An anomaly in the
magnetic anisotropy at T_X signals a phase transition to an ordered low-T
state. The results are interpreted in terms of orbital ordering and spin
pairing within the lowest crystal field quasi-doublet. The disordered insulator
at T_X<T<T_MI is described as a classical liquid of non-magnetic pairs.Comment: 4 pages, 5 figures, revtex, epsf, and multicol style. Problem with
figures fixed. To appear in Phys. Rev. B Rap. Com
Investigation of the thermal stability of Mg/Co periodic multilayers for EUV applications
We present the results of the characterization of Mg/Co periodic multilayers
and their thermal stability for the EUV range. The annealing study is performed
up to a temperature of 400\degree C. Images obtained by scanning transmission
electron microscopy and electron energy loss spectroscopy clearly show the good
quality of the multilayer structure. The measurements of the EUV reflectivity
around 25 nm (~49 eV) indicate that the reflectivity decreases when the
annealing temperature increases above 300\degreeC. X-ray emission spectroscopy
is performed to determine the chemical state of the Mg atoms within the Mg/Co
multilayer. Nuclear magnetic resonance used to determine the chemical state of
the Co atoms and scanning electron microscopy images of cross sections of the
Mg/Co multilayers reveal changes in the morphology of the stack from an
annealing temperature of 305\degreee;C. This explains the observed reflectivity
loss.Comment: Published in Applied Physics A: Materials Science \& Processing
Published at
http://www.springerlink.com.chimie.gate.inist.fr/content/6v396j6m56771r61/ 21
page
Lifetime determination of excited states in Cd-106
Two separate experiments using the Differential Decay Curve Method have been performed to extract mean lifetimes of excited states in 106 Cd. The inedium-spin states of interest were populated by the Mo-98(C-12, 4n) Cd-106 reaction performed at the Wright Nuclear Structure Lab., Yale University. From this experiment, two isomeric state mean lifetimes have been deduced. The low-lying states were populated by the Mo-96(C-13, 3n)Cd-106 reaction performed at the Institut fur Kernphysik, Universitat zu Koln. The mean lifetime of the I-pi = 2(1)(+) state was deduced, tentatively, as 16.4(9) ps. This value differs from the previously accepted literature value from Coulomb excitation of 10.43(9) ps
Observation of coherent many-body Rabi oscillations
A two-level quantum system coherently driven by a resonant electromagnetic
field oscillates sinusoidally between the two levels at frequency
which is proportional to the field amplitude [1]. This phenomenon, known as the
Rabi oscillation, has been at the heart of atomic, molecular and optical
physics since the seminal work of its namesake and coauthors [2]. Notably, Rabi
oscillations in isolated single atoms or dilute gases form the basis for
metrological applications such as atomic clocks and precision measurements of
physical constants [3]. Both inhomogeneous distribution of coupling strength to
the field and interactions between individual atoms reduce the visibility of
the oscillation and may even suppress it completely. A remarkable
transformation takes place in the limit where only a single excitation can be
present in the sample due to either initial conditions or atomic interactions:
there arises a collective, many-body Rabi oscillation at a frequency
involving all N >> 1 atoms in the sample [4]. This is true even
for inhomogeneous atom-field coupling distributions, where single-atom Rabi
oscillations may be invisible. When one of the two levels is a strongly
interacting Rydberg level, many-body Rabi oscillations emerge as a consequence
of the Rydberg excitation blockade. Lukin and coauthors outlined an approach to
quantum information processing based on this effect [5]. Here we report initial
observations of coherent many-body Rabi oscillations between the ground level
and a Rydberg level using several hundred cold rubidium atoms. The strongly
pronounced oscillations indicate a nearly complete excitation blockade of the
entire mesoscopic ensemble by a single excited atom. The results pave the way
towards quantum computation and simulation using ensembles of atoms
A Rydberg Quantum Simulator
Following Feynman and as elaborated on by Lloyd, a universal quantum
simulator (QS) is a controlled quantum device which reproduces the dynamics of
any other many particle quantum system with short range interactions. This
dynamics can refer to both coherent Hamiltonian and dissipative open system
evolution. We investigate how laser excited Rydberg atoms in large spacing
optical or magnetic lattices can provide an efficient implementation of a
universal QS for spin models involving (high order) n-body interactions. This
includes the simulation of Hamiltonians of exotic spin models involving
n-particle constraints such as the Kitaev toric code, color code, and lattice
gauge theories with spin liquid phases. In addition, it provides the
ingredients for dissipative preparation of entangled states based on
engineering n-particle reservoir couplings. The key basic building blocks of
our architecture are efficient and high-fidelity n-qubit entangling gates via
auxiliary Rydberg atoms, including a possible dissipative time step via optical
pumping. This allows to mimic the time evolution of the system by a sequence of
fast, parallel and high-fidelity n-particle coherent and dissipative Rydberg
gates.Comment: 8 pages, 4 figure
Breathing Current Domains in Globally Coupled Electrochemical Systems: A Comparison with a Semiconductor Model
Spatio-temporal bifurcations and complex dynamics in globally coupled
intrinsically bistable electrochemical systems with an S-shaped current-voltage
characteristic under galvanostatic control are studied theoretically on a
one-dimensional domain. The results are compared with the dynamics and the
bifurcation scenarios occurring in a closely related model which describes
pattern formation in semiconductors. Under galvanostatic control both systems
are unstable with respect to the formation of stationary large amplitude
current domains. The current domains as well as the homogeneous steady state
exhibit oscillatory instabilities for slow dynamics of the potential drop
across the double layer, or across the semiconductor device, respectively. The
interplay of the different instabilities leads to complex spatio-temporal
behavior. We find breathing current domains and chaotic spatio-temporal
dynamics in the electrochemical system. Comparing these findings with the
results obtained earlier for the semiconductor system, we outline bifurcation
scenarios leading to complex dynamics in globally coupled bistable systems with
subcritical spatial bifurcations.Comment: 13 pages, 11 figures, 70 references, RevTex4 accepted by PRE
http://pre.aps.or
Predicting phase equilibria in polydisperse systems
Many materials containing colloids or polymers are polydisperse: They
comprise particles with properties (such as particle diameter, charge, or
polymer chain length) that depend continuously on one or several parameters.
This review focusses on the theoretical prediction of phase equilibria in
polydisperse systems; the presence of an effectively infinite number of
distinguishable particle species makes this a highly nontrivial task. I first
describe qualitatively some of the novel features of polydisperse phase
behaviour, and outline a theoretical framework within which they can be
explored. Current techniques for predicting polydisperse phase equilibria are
then reviewed. I also discuss applications to some simple model systems
including homopolymers and random copolymers, spherical colloids and
colloid-polymer mixtures, and liquid crystals formed from rod- and plate-like
colloidal particles; the results surveyed give an idea of the rich
phenomenology of polydisperse phase behaviour. Extensions to the study of
polydispersity effects on interfacial behaviour and phase separation kinetics
are outlined briefly.Comment: 48 pages, invited topical review for Journal of Physics: Condensed
Matter; uses Institute of Physics style file iopart.cls (included
- …