19,394 research outputs found
Upward Three-Dimensional Grid Drawings of Graphs
A \emph{three-dimensional grid drawing} of a graph is a placement of the
vertices at distinct points with integer coordinates, such that the straight
line segments representing the edges do not cross. Our aim is to produce
three-dimensional grid drawings with small bounding box volume. We prove that
every -vertex graph with bounded degeneracy has a three-dimensional grid
drawing with volume. This is the broadest class of graphs admiting
such drawings. A three-dimensional grid drawing of a directed graph is
\emph{upward} if every arc points up in the z-direction. We prove that every
directed acyclic graph has an upward three-dimensional grid drawing with
volume, which is tight for the complete dag. The previous best upper
bound was . Our main result is that every -colourable directed
acyclic graph ( constant) has an upward three-dimensional grid drawing with
volume. This result matches the bound in the undirected case, and
improves the best known bound from for many classes of directed
acyclic graphs, including planar, series parallel, and outerplanar
Hybrid bounds for twisted L-functions
The aim of this paper is to derive bounds on the critical line Rs 1/2 for L- functions attached to twists f circle times chi of a primitive cusp form f of level N and a primitive character modulo q that break convexity simultaneously in the s and q aspects. If f has trivial nebentypus, it is shown that
L(f circle times chi, s) << (N vertical bar s vertical bar q)(epsilon) N-4/5(vertical bar s vertical bar q)(1/2-1/40),
where the implied constant depends only on epsilon > 0 and the archimedean parameter of f. To this end, two independent methods are employed to show
L(f circle times chi, s) << (N vertical bar s vertical bar q)(epsilon) N-1/2 vertical bar S vertical bar(1/2)q(3/8) and
L(g,s) << D-2/3 vertical bar S vertical bar(5/12)
for any primitive cusp form g of level D and arbitrary nebentypus (not necessarily a twist f circle times chi of level D vertical bar Nq(2))
Recommended from our members
Aligning scan acquisition circles in optical coherence tomography images of the retinal nerve fibre layer
Optical coherence tomography (OCT) is widely used in the assessment of retinal nerve fibre layer thickness (RNFLT) in glaucoma. Images are typically acquired with a circular scan around the optic nerve head. Accurate registration of OCT scans is essential for measurement reproducibility and longitudinal examination. This study developed and evaluated a special image registration algorithm to align the location of the OCT scan circles to the vessel features in the retina using probabilistic modelling that was optimised by an expectation-maximization algorithm. Evaluation of the method on 18 patients undergoing large numbers of scans indicated improved data acquisition and better reproducibility of measured RNFLT when scanning circles were closely matched. The proposed method enables clinicians to consider the RNFLT measurement and its scan circle location on the retina in tandem, reducing RNFLT measurement variability and assisting detection of real change of RNFLT in the longitudinal assessment of glaucoma
Minimal Brownian Ratchet: An Exactly Solvable Model
We develop an exactly-solvable three-state discrete-time minimal Brownian
ratchet (MBR), where the transition probabilities between states are
asymmetric. By solving the master equations we obtain the steady-state
probabilities. Generally the steady-state solution does not display detailed
balance, giving rise to an induced directional motion in the MBR. For a reduced
two-dimensional parameter space we find the null-curve on which the net current
vanishes and detailed balance holds. A system on this curve is said to be
balanced. On the null-curve, an additional source of external random noise is
introduced to show that a directional motion can be induced under the zero
overall driving force. We also indicate the off-balance behavior with biased
random noise.Comment: 4 pages, 4 figures, RevTex source, General solution added. To be
appeared in Phys. Rev. Let
Tunable dipolar magnetism in high-spin molecular clusters
We report on the Fe17 high-spin molecular cluster and show that this system
is an exemplification of nanostructured dipolar magnetism. Each Fe17 molecule,
with spin S=35/2 and axial anisotropy as small as D=-0.02K, is the magnetic
unit that can be chemically arranged in different packing crystals whilst
preserving both spin ground-state and anisotropy. For every configuration,
molecular spins are correlated only by dipolar interactions. The ensuing
interplay between dipolar energy and anisotropy gives rise to macroscopic
behaviors ranging from superparamagnetism to long-range magnetic order at
temperatures below 1K.Comment: Replaced with version accepted for publication in Physical Review
Letter
Can a galaxy redshift survey measure dark energy clustering?
(abridged) A wide-field galaxy redshift survey allows one to probe galaxy
clustering at largest spatial scales, which carries an invaluable information
on horizon-scale physics complementarily to the cosmic microwave background
(CMB). Assuming the planned survey consisting of z~1 and z~3 surveys with areas
of 2000 and 300 square degrees, respectively, we study the prospects for
probing dark energy clustering from the measured galaxy power spectrum,
assuming the dynamical properties of dark energy are specified in terms of the
equation of state and the effective sound speed c_e in the context of an
adiabatic cold dark matter dominated model. The dark energy clustering adds a
power to the galaxy power spectrum amplitude at spatial scales greater than the
sound horizon, and the enhancement is sensitive to redshift evolution of the
net dark energy density, i.e. the equation of state. We find that the galaxy
survey, when combined with Planck, can distinguish dark energy clustering from
a smooth dark energy model such as the quintessence model (c_e=1), when
c_e<0.04 (0.02) in the case of the constant equation of state w_0=-0.9 (-0.95).
An ultimate full-sky survey of z~1 galaxies allows the detection when c_e<0.08
(0.04) for w_0=0.9 (-0.95). We also investigate a degeneracy between the dark
energy clustering and the non-relativistic neutrinos implied from the neutrino
oscillation experiments, because the two effects both induce a scale-dependent
modification in the galaxy power spectrum shape at largest spatial scales
accessible from the galaxy survey. It is shown that a wider redshift coverage
can efficiently separate the two effects by utilizing the different redshift
dependences, where dark energy clustering is apparent only at low redshifts
z<1.Comment: 14 pages, 7 figures; minor changes to match the published versio
Variation in human mate choice: Simultaneously investigating heritability, parental influence, sexual imprinting, and assortative mating
Human mate choice is central to individuals' lives and to the evolution of the species, but the basis of variation in mate choice is not well understood. Here we looked at a large community-based sample of twins and their partners and parents (N > 20,000 individuals) to test for genetic and family environmental influences on mate choice, while controlling for and not controlling for the effects of assortative mating. Key traits were analyzed, including height, body mass index, age, education, income, personality, social attitudes, and religiosity. This revealed near-zero genetic influences on male and female mate choice over all traits and no significant genetic influences on mate choice for any specific trait. A significant family environmental influence was found for the age and income of females' mate choices, possibly reflecting parental influence over mating decisions. We also tested for evidence of sexual imprinting, where individuals acquire mate-choice criteria during development by using their opposite-sex parent as the template of a desirable mate; there was no such effect for any trait. The main discernible pattern of mate choice was assortative mating; we found that partner similarity was due to initial choice rather than convergence and also at least in part to phenotypic matching
Ordered Level Planarity, Geodesic Planarity and Bi-Monotonicity
We introduce and study the problem Ordered Level Planarity which asks for a
planar drawing of a graph such that vertices are placed at prescribed positions
in the plane and such that every edge is realized as a y-monotone curve. This
can be interpreted as a variant of Level Planarity in which the vertices on
each level appear in a prescribed total order. We establish a complexity
dichotomy with respect to both the maximum degree and the level-width, that is,
the maximum number of vertices that share a level. Our study of Ordered Level
Planarity is motivated by connections to several other graph drawing problems.
Geodesic Planarity asks for a planar drawing of a graph such that vertices
are placed at prescribed positions in the plane and such that every edge is
realized as a polygonal path composed of line segments with two adjacent
directions from a given set of directions symmetric with respect to the
origin. Our results on Ordered Level Planarity imply -hardness for any
with even if the given graph is a matching. Katz, Krug, Rutter and
Wolff claimed that for matchings Manhattan Geodesic Planarity, the case where
contains precisely the horizontal and vertical directions, can be solved in
polynomial time [GD'09]. Our results imply that this is incorrect unless
. Our reduction extends to settle the complexity of the Bi-Monotonicity
problem, which was proposed by Fulek, Pelsmajer, Schaefer and
\v{S}tefankovi\v{c}.
Ordered Level Planarity turns out to be a special case of T-Level Planarity,
Clustered Level Planarity and Constrained Level Planarity. Thus, our results
strengthen previous hardness results. In particular, our reduction to Clustered
Level Planarity generates instances with only two non-trivial clusters. This
answers a question posed by Angelini, Da Lozzo, Di Battista, Frati and Roselli.Comment: Appears in the Proceedings of the 25th International Symposium on
Graph Drawing and Network Visualization (GD 2017
The high temperature erosion-corrosion behaviour of industrial thermal sprayed coatings
Describes the high temperature erosion-corrosion behaviour of industrial thermal sprayed coatings
- …