57 research outputs found
Disambiguation strategies for data-oriented translation
The Data-Oriented Translation (DOT) model { originally proposed in (Poutsma, 1998, 2003) and based on Data-Oriented Parsing (DOP) (e.g. (Bod, Scha, & Sima'an, 2003)) { is best described as a hybrid model of
translation as it combines examples, linguistic information and a statistical translation model. Although theoretically interesting, it inherits the computational complexity associated with DOP. In this paper, we focus on
one computational challenge for this model: efficiently selecting the `best' translation to output. We present four different disambiguation strategies in terms of how they are implemented in our DOT system, along with experiments
which investigate how they compare in terms of accuracy and
efficiency
Seeing the wood for the trees: data-oriented translation
Data-Oriented Translation (DOT), which is based on Data-Oriented Parsing (DOP), comprises an experience-based approach to translation, where new translations are derived with reference to grammatical analyses of previous translations. Previous DOT experiments [Poutsma, 1998, Poutsma, 2000a, Poutsma, 2000b] were small in scale because important advances in DOP technology were not incorporated
into the translation model. Despite this, related work [Way, 1999, Way, 2003a, Way, 2003b] reports that DOT models are viable in that solutions to ‘hard’ translation cases are readily available. However, it has not been shown to date that DOT models scale to larger datasets. In this work, we describe a novel DOT system, inspired by recent advances in DOP parsing technology. We test our system on larger, more complex corpora than have been used heretofore, and present both automatic and human evaluations which show that high quality translations can be achieved at reasonable speeds
Structured parameter estimation for LFG-DOP using Backoff
Despite its state-of-the-art performance, the Data Oriented
Parsing (DOP) model has been shown to suffer from biased parameter estimation, and the good performance seems more the result of ad hoc adjustments than correct probabilistic generalization over the data. In recent work, we developed a new estimation procedure, called Backoff Estimation, for
DOP models that are based on Phrase-Structure annotations
(so called Tree-DOP models). Backoff Estimation deviates from earlier methods in that it treats the model parameters as a highly structured space of correlated events (backoffs), rather than a set of disjoint events. In this paper we show that the problem of biased estimates also holds for DOP models that are based on Lexical-Functional Grammar annotations (i.e. LFG-DOP), and that the LFG-DOP parameters also constitute a hierarchically structured space. Subsequently, we adapt the Backoff Estimation algorithm from Tree-DOP to LFG-DOP models. Backoff
Estimation turns out to be a natural solution to some
of the specific problems of robust parsing under LFGDOP
Data-oriented parsing and the Penn Chinese treebank
We present an investigation into parsing the Penn Chinese Treebank using a Data-Oriented Parsing (DOP) approach. DOP
comprises an experience-based approach to natural language parsing. Most published research in the DOP framework uses PStrees as its representation schema. Drawbacks of the DOP approach centre around issues of efficiency. We incorporate recent advances in DOP parsing techniques into a novel DOP parser which generates a compact representation of all subtrees which can be derived from any full parse tree.
We compare our work to previous work on parsing the Penn Chinese Treebank, and provide both a quantitative and qualitative evaluation. While our results in terms of Precision and Recall are slightly below those published in related research, our approach requires no manual encoding of head rules, nor is a development phase per se necessary.
We also note that certain constructions which were problematic in this previous work can be handled correctly by our DOP parser. Finally, we observe that the ‘DOP Hypothesis’ is confirmed for parsing the Penn Chinese Treebank
Parallel Treebanks in Phrase-Based Statistical Machine Translation
Given much recent discussion and the shift in focus of the field, it is becoming apparent that the incorporation of syntax is the way forward for the current state-of-the-art in machine translation (MT). Parallel treebanks are a relatively recent innovation and appear to be ideal candidates for MT training material. However, until recently there has been no other means to build them than by
hand. In this paper, we describe how we make use of new tools to automatically build a large parallel treebank and extract a set of linguistically motivated phrase pairs from it. We show that adding these phrase pairs to the translation model of a baseline phrase-based statistical MT (PBSMT) system leads to significant improvements in translation quality. We describe further experiments on incorporating parallel treebank information into PBSMT, such as word alignments. We investigate the conditions under which the incorporation of parallel treebank data performs optimally. Finally, we discuss the potential of parallel treebanks in other paradigms of MT
Comparing constituency and dependency representations for SMT phrase-extraction
We consider the value of replacing and/or combining string-based methods with syntax-based methods for phrase-based statistical machine translation (PBSMT),
and we also consider the relative merits of using constituency-annotated vs. dependency-annotated training data. We automatically derive two subtree-aligned treebanks,
dependency-based and constituency-based, from a parallel English–French corpus and extract syntactically motivated word- and phrase-pairs. We automatically measure PB-SMT quality. The results show that combining string-based and syntax-based word- and phrase-pairs can improve translation quality irrespective of the type of syntactic annotation. Furthermore, using dependency annotation yields greater translation quality than constituency annotation for PB-SMT
Outstanding Southeastern Author Awards Go to Patchett and Carter
Mary Glenn Hearne, chair, presented SELA’s 2002 Outstanding Author Awards to Ann Patchett and Jimmy Carter
Robust language pair-independent sub-tree alignment
Data-driven approaches to machine translation (MT) achieve state-of-the-art results. Many syntax-aware approaches, such as Example-Based MT and Data-Oriented Translation, make use of tree pairs aligned at sub-sentential level. Obtaining sub-sentential alignments manually is time-consuming and error-prone, and requires expert knowledge of both source and target languages. We propose a novel, language pair-independent algorithm which automatically induces alignments between phrase-structure trees. We evaluate the alignments themselves against a manually aligned gold standard, and perform an extrinsic evaluation by using the aligned data to train and test a DOT system. Our results show that translation accuracy is comparable to that of the same translation system trained on manually aligned data, and coverage improves
Syntactic phrase-based statistical machine translation
Phrase-based statistical machine translation (PBSMT) systems represent the dominant approach in MT today. However, unlike systems in other paradigms, it has proven difficult to date to incorporate syntactic knowledge in order to improve translation quality. This paper improves on recent research which uses 'syntactified' target language phrases, by incorporating supertags as constraints to better resolve parse tree fragments. In addition, we do not impose any sentence-length limit, and using a log-linear decoder, we outperform a state-of-the-art PBSMT system by over 1.3 BLEU points (or 3.51% relative) on the NIST 2003 Arabic-English test corpus
Capturing translational divergences with a statistical tree-to-tree aligner
Parallel treebanks, which comprise paired source-target parse trees aligned at sub-sentential level, could be useful
for many applications, particularly data-driven machine translation. In this paper, we focus on how translational
divergences are captured within a parallel treebank using a fully automatic statistical tree-to-tree aligner. We
observe that while the algorithm performs well at the phrase level, performance on lexical-level alignments
is compromised by an inappropriate bias towards coverage rather than precision. This preference for high precision
rather than broad coverage in terms of expressing translational divergences through tree-alignment stands in
direct opposition to the situation for SMT word-alignment models. We suggest that this has implications not only
for tree-alignment itself but also for the broader area of induction of syntaxaware models for SMT
- …