406 research outputs found
The experience of community first responders in co-producing rural health care : in the liminal gap between citizen and professional
Non peer reviewedPublisher PD
A multivalent DNA aptamer specific for the B-cell receptor on human lymphoma and leukemia
Long-term survival still eludes most patients with leukemia and non-Hodgkin’s lymphoma. No approved therapies target the hallmark of the B cell, its mIgM, also known as the B-cell receptor (BCR). Aptamers are small oligonucleotides that can specifically bind to a wide range of target molecules and offer some advantages over antibodies as therapeutic agents. Here, we report the rational engineering of aptamer TD05 into multimeric forms reactive with the BCR that may be useful in biomedical applications. Systematic truncation of TD05 coupled with modification with locked nucleic acids (LNA) increased conformational stability and nuclease resistance. Trimeric and tetrameric versions with optimized polyethyleneglycol (PEG) linker lengths exhibited high avidity at physiological temperatures both in vitro and in vivo. Competition and protease studies showed that the multimeric, optimized aptamer bound to membrane-associated human mIgM, but not with soluble IgM in plasma, allowing the possibility of targeting leukemias and lymphomas in vivo. The B-cell specificity of the multivalent aptamer was confirmed on lymphoma cell lines and fresh clinical leukemia samples. The chemically engineered aptamers, with significantly improved kinetic and biochemical features, unique specificity and desirable pharmacological properties, may be useful in biomedical applications
In vivo editing of the pan-endothelium by immunity evading simian adenoviral vector
Biological applications deriving from the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 site-specific nuclease system continue to impact and accelerate gene therapy strategies. Safe and effective in vivo co-delivery of the CRISPR/Cas9 system to target somatic cells is essential in the clinical therapeutic context. Both non-viral and viral vector systems have been applied for this delivery matter. Despite elegant proof-of-principle studies, available vector technologies still face challenges that restrict the application of CRISPR/Cas9-facilitated gene therapy. Of note, the mandated co-delivery of the gene-editing components must be accomplished in the potential presence of pre-formed anti-vector immunity. Additionally, methods must be sought to limit the potential of off-target editing. To this end, we have exploited the molecular promiscuities of adenovirus (Ad) to address the key requirements of CRISPR/Cas9-facilitated gene therapy. In this regard, we have endeavored capsid engineering of a simian (chimpanzee) adenovirus isolate 36 (SAd36) to achieve targeted modifications of vector tropism. The SAd36 vector with the myeloid cell-binding peptide (MBP) incorporated in the capsid has allowed selective in vivo modifications of the vascular endothelium. Importantly, vascular endothelium can serve as an effective non-hepatic cellular source of deficient serum factors relevant to several inherited genetic disorders. In addition to allowing for re-directed tropism, capsid engineering of nonhuman primate Ads provide the means to circumvent pre-formed vector immunity. Herein we have generated a SAd36. MBP vector that can serve as a single intravenously administered agent allowing effective and selective in vivo editing for endothelial target cells of the mouse spleen, brain and kidney. DATA AVAILABILITY: The data that support the findings of this study are available from the corresponding author upon reasonable request
Response comparison of multiple myeloma and monoclonal gammopathy of undetermined significance to the same anti-myeloma therapy: a retrospective cohort study
BackgroundMultiple myeloma is consistently preceded by monoclonal gammopathy of undetermined significance (MGUS), which is usually only treated by a form of anti-multiple myeloma therapy if it is causing substantial disease through deposition of secreted M proteins. However, studies comparing how MGUS and multiple myeloma plasma cell clones respond to these therapies are scarce. Biclonal gammopathy multiple myeloma is characterised by the coexistence of an active multiple myeloma clone and a benign MGUS clone, and thus provides a unique model to assess the responses of separate clones to the same anti-multiple myeloma therapy, in the same patient, at the same time. We aimed to identify how MGUS and multiple myeloma plasma cell clones responded to anti-multiple myeloma therapy in patients newly diagnosed with biclonal gammopathy multiple myeloma.MethodsIn this retrospective cohort study, we identified patients with biclonal gammopathy multiple myeloma by central laboratory analysis of 6399 newly diagnosed patients with multiple myeloma enrolled in three UK clinical trials (Myeloma IX, Myeloma XI, and TEAMM) between July 7, 2004, and June 2, 2015. In addition to the inclusion criteria of these trials, our study necessitated at trial entry the presence of two distinct M proteins in immunofixation electrophoresis. The primary endpoint was difference in response achieved with anti-multiple myeloma therapy on MGUS (which we defined as M2) and multiple myeloma (M1) clones—overall, within patients, and between therapy types—with international therapy response criteria assessed with χ2 analyses. We analysed by intention to treat.Findings44 patients with biclonal gammopathy multiple myeloma with IgG or IgA MGUS clones were subsequently identified from the three trials and then longitudinally monitored. 41 (93%) of M1 clones had a response to therapy (either complete response, very good partial response, partial response, or minor response) compared with only 28 (64%) of M2 clones (p=0·0010). For the 20 patients who received intensive therapy, there was no difference between the proportion of responding clones in M1 (19 [95%]) and M2 (15 [75%], p=0·13). However, for the 17 patients who received non-intensive therapy, 16 (94%) of M1 clones had a response compared with ten [59%] of M2 clones (p=0·031). When examining clones within the same patient, 30 (68%) of 44 individual patients had different levels of responses within the M1 and M2 clones. One patient exhibited M2 progression to myeloma and subsequently died.InterpretationThese results show that, in patients with biclonal gammopathy multiple myeloma, anti-multiple myeloma therapies exert a greater depth of response against multiple myeloma plasma cell clones than MGUS plasma cell clones. Although some MGUS clones exhibited a complete response, many did not respond, which suggests that the underlying features that render multiple myeloma plasma cells susceptible to therapy are present in only some MGUS plasma cell clones. To determine MGUS clone susceptibly to therapy, future studies might seek to identify, with biclonal gammopathy multiple myeloma as an investigative model, the genetic and epigenetic alterations that affect whether MGUS plasma cell clones are responsive to anti-multiple myeloma therapy
OCS Reduction According to the Presence of Nasal Polyps or Atopic Status in the PONENTE Study
Peer reviewedPostprin
Adrenal Insufficiency is Not a Barrier to OCS Elimination in the PONENTE Study
Peer reviewedPostprin
Heterogeneity and Disorder: Contributions of Rolf Landauer
Rolf Landauer made important contributions to many branches of science.
Within the broad area of transport in disordered media, he wrote seminal papers
on electrical conduction in macroscopically inhomogeneous materials, as well as
fundamental analyses of electron transport in quantum mechanical systems with
disorder on the atomic scale. We review here some of these contributions. We
also briefly describe some main events in his personal and scientific life.Comment: 10 pages, 3 figures; presented on the occasion when Rolf Landauer was
awarded, posthumously, the inaugural ETOPIM Medal at the ETOPIM 8 Conference,
which took place during 7--12 June, 2009 in Rethymnon, Cret
Characterising the impact of sex on severe asthma (SA) in the UK Severe Asthma Registry (UKSAR)
Peer reviewedPostprin
Structural Evolution of CO2-Filled Pure Silica LTA Zeolite under High-Pressure High-Temperature Conditions
[EN] The crystal structure of CO2-filled pure-SiO2 LTA zeolite has been studied at high pressures and temperatures using synchrotron-based X-ray powder diffraction. Its structure consists of 13 CO2 guest molecules, 12 of them accommodated in the large alpha-cages and one in the beta-cages, giving a SiO2/CO2 stoichiometric ratio smaller than 2. The structure remains stable under pressure up to 20 GPa with a slight pressure-dependent rhombohedral distortion, indicating that pressure-induced amorphization is prevented by the insertion of guest species in this open framework. The ambient temperature lattice compressibility has been determined. In situ high-pressure resistive-heating experiments up to 750 K allow us to estimate the thermal expansivity at P approximate to 5 GPa. Our data confirm that the insertion of CO2 reverses the negative thermal expansion of the empty zeolite structure. No evidence of any chemical reaction was observed. The possibility of synthesizing a silicon carbonate at high temperatures and higher pressures is discussed in terms of the evolution of C-O and Si-O distances between molecular and framework atoms.The authors thank the financial support of the Spanish Ministerio de Economia y Competitividad (MINECO), the Spanish Research Agency (AEI), and the European Fund for Regional Development (FEDER) under Grant Nos. MAT2016-75586-C4-1-P, MAT2015-71842-P, Severo Ochoa SEV-2012-0267, and No.MAT2015-71070-REDC (MALTA Consolider). D.S.-P. and J.R.-F. acknowledge MINECO for a Ramon y Cajal and a Juan de la Cierva contract, respectively. Portions of this work were performed at GeoSoilEnviroCARS (Sector 13), Advanced Photon Source (APS), Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation - Earth Sciences (EAR-1128799) and Department of Energy- GeoSciences (DE-FG02-94ER14466). This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Use of the COMPRES-GSECARS gas loading system was supported by COMPRES under NSF Cooperative Agreement EAR 11-57758. CO2 gas was also loaded at Diamond Light Source. Authors thank synchrotron ALBA-CELLS for beamtime allocation at MSPD line. British Crown Owned Copyright 2017/AWE. Published with permission of the Controller of Her Britannic Majesty's Stationery Office.Santamaria-Perez, D.; Marqueño, T.; Macleod, S.; Ruiz-Fuertes, J.; Daisenberger, D.; Chulia-Jordan, R.; Errandonea, D.... (2017). Structural Evolution of CO2-Filled Pure Silica LTA Zeolite under High-Pressure High-Temperature Conditions. Chemistry of Materials. 29(10):4502-4510. https://doi.org/10.1021/acs.chemmater.7b01158S45024510291
- …