55,414 research outputs found

    Tuning electronic structure of graphene via tailoring structure: theoretical study

    Full text link
    Electronic structures of graphene sheet with different defective patterns are investigated, based on the first principles calculations. We find that defective patterns can tune the electronic structures of the graphene significantly. Triangle patterns give rise to strongly localized states near the Fermi level, and hexagonal patterns open up band gaps in the systems. In addition, rectangular patterns, which feature networks of graphene nanoribbons with either zigzag or armchair edges, exhibit semiconducting behaviors, where the band gap has an evident dependence on the width of the nanoribbons. For the networks of the graphene nanoribbons, some special channels for electronic transport are predicted.Comment: 5 figures, 6 page

    Collaborative signal and information processing for target detection with heterogeneous sensor networks

    Get PDF
    In this paper, an approach for target detection and acquisition with heterogeneous sensor networks through strategic resource allocation and coordination is presented. Based on sensor management and collaborative signal and information processing, low-capacity low-cost sensors are strategically deployed to guide and cue scarce high performance sensors in the network to improve the data quality, with which the mission is eventually completed more efficiently with lower cost. We focus on the problem of designing such a network system in which issues of resource selection and allocation, system behaviour and capacity, target behaviour and patterns, the environment, and multiple constraints such as the cost must be addressed simultaneously. Simulation results offer significant insight into sensor selection and network operation, and demonstrate the great benefits introduced by guided search in an application of hunting down and capturing hostile vehicles on the battlefield

    Array signal processing for maximum likelihood direction-of-arrival estimation

    Get PDF
    Emitter Direction-of-Arrival (DOA) estimation is a fundamental problem in a variety of applications including radar, sonar, and wireless communications. The research has received considerable attention in literature and numerous methods have been proposed. Maximum Likelihood (ML) is a nearly optimal technique producing superior estimates compared to other methods especially in unfavourable conditions, and thus is of significant practical interest. This paper discusses in details the techniques for ML DOA estimation in either white Gaussian noise or unknown noise environment. Their performances are analysed and compared, and evaluated against the theoretical lower bounds

    Z-D Brane Box Models and Non-Chiral Dihedral Quivers

    Get PDF
    Generalising ideas of an earlier work \cite{Bo-Han}, we address the problem of constructing Brane Box Models of what we call the Z-D Type from a new point of view, so as to establish the complete correspondence between these brane setups and orbifold singularities of the non-Abelian G generated by Z_k and D_d under certain group-theoretic constraints to which we refer as the BBM conditions. Moreover, we present a new class of N=1{\cal N}=1 quiver theories of the ordinary dihedral group d_k as well as the ordinary exceptionals E_{6,7,8} which have non-chiral matter content and discuss issues related to brane setups thereof

    Charmonium suppression by gluon bremsstrahlung in p-A and A-B collisions

    Full text link
    Prompt gluons are an additional source for charmonium suppression in nuclear collisions, in particular for nucleus-nucleus collisions. These gluons are radiated as bremsstrahlung in N-N collisions and interact inelastically with the charmonium states while the nuclei still overlap. The spectra and mean number of the prompt gluons are calculated perturbatively and the gluon-Psi inelastic cross section is estimated. The integrated cross sections for AB --> J/Psi (Psi')X for p-A and A-B collisions and the dependence on transverse energy for S-U and Pb-Pb can be described quantitatively with some adjustment of one parameter \sigma(gPsi).Comment: 17 pages of Latex including 10 figure
    corecore