44 research outputs found

    Sequence to Sequence Mixture Model for Diverse Machine Translation

    Full text link
    Sequence to sequence (SEQ2SEQ) models often lack diversity in their generated translations. This can be attributed to the limitation of SEQ2SEQ models in capturing lexical and syntactic variations in a parallel corpus resulting from different styles, genres, topics, or ambiguity of the translation process. In this paper, we develop a novel sequence to sequence mixture (S2SMIX) model that improves both translation diversity and quality by adopting a committee of specialized translation models rather than a single translation model. Each mixture component selects its own training dataset via optimization of the marginal loglikelihood, which leads to a soft clustering of the parallel corpus. Experiments on four language pairs demonstrate the superiority of our mixture model compared to a SEQ2SEQ baseline with standard or diversity-boosted beam search. Our mixture model uses negligible additional parameters and incurs no extra computation cost during decoding.Comment: 11 pages, 5 figures, accepted to CoNLL201

    Word Representation Models for Morphologically Rich Languages in Neural Machine Translation

    Full text link
    Dealing with the complex word forms in morphologically rich languages is an open problem in language processing, and is particularly important in translation. In contrast to most modern neural systems of translation, which discard the identity for rare words, in this paper we propose several architectures for learning word representations from character and morpheme level word decompositions. We incorporate these representations in a novel machine translation model which jointly learns word alignments and translations via a hard attention mechanism. Evaluating on translating from several morphologically rich languages into English, we show consistent improvements over strong baseline methods, of between 1 and 1.5 BLEU points

    Generative Models are Self-Watermarked: Declaring Model Authentication through Re-Generation

    Full text link
    As machine- and AI-generated content proliferates, protecting the intellectual property of generative models has become imperative, yet verifying data ownership poses formidable challenges, particularly in cases of unauthorized reuse of generated data. The challenge of verifying data ownership is further amplified by using Machine Learning as a Service (MLaaS), which often functions as a black-box system. Our work is dedicated to detecting data reuse from even an individual sample. Traditionally, watermarking has been leveraged to detect AI-generated content. However, unlike watermarking techniques that embed additional information as triggers into models or generated content, potentially compromising output quality, our approach identifies latent fingerprints inherently present within the outputs through re-generation. We propose an explainable verification procedure that attributes data ownership through re-generation, and further amplifies these fingerprints in the generative models through iterative data re-generation. This methodology is theoretically grounded and demonstrates viability and robustness using recent advanced text and image generative models. Our methodology is significant as it goes beyond protecting the intellectual property of APIs and addresses important issues such as the spread of misinformation and academic misconduct. It provides a useful tool to ensure the integrity of sources and authorship, expanding its application in different scenarios where authenticity and ownership verification are essential

    Use of LLMs for Illicit Purposes: Threats, Prevention Measures, and Vulnerabilities

    Full text link
    Spurred by the recent rapid increase in the development and distribution of large language models (LLMs) across industry and academia, much recent work has drawn attention to safety- and security-related threats and vulnerabilities of LLMs, including in the context of potentially criminal activities. Specifically, it has been shown that LLMs can be misused for fraud, impersonation, and the generation of malware; while other authors have considered the more general problem of AI alignment. It is important that developers and practitioners alike are aware of security-related problems with such models. In this paper, we provide an overview of existing - predominantly scientific - efforts on identifying and mitigating threats and vulnerabilities arising from LLMs. We present a taxonomy describing the relationship between threats caused by the generative capabilities of LLMs, prevention measures intended to address such threats, and vulnerabilities arising from imperfect prevention measures. With our work, we hope to raise awareness of the limitations of LLMs in light of such security concerns, among both experienced developers and novel users of such technologies.Comment: Pre-prin

    Koala: An Index for Quantifying Overlaps with Pre-training Corpora

    Full text link
    In very recent years more attention has been placed on probing the role of pre-training data in Large Language Models (LLMs) downstream behaviour. Despite the importance, there is no public tool that supports such analysis of pre-training corpora at large scale. To help research in this space, we launch Koala, a searchable index over large pre-training corpora using compressed suffix arrays with highly efficient compression rate and search support. In its first release we index the public proportion of OPT 175B pre-training data. Koala provides a framework to do forensic analysis on the current and future benchmarks as well as to assess the degree of memorization in the output from the LLMs. Koala is available for public use at https://koala-index.erc.monash.edu/.Comment: Available here: https://koala-index.erc.monash.edu

    Can Knowledge Graphs Simplify Text?

    Full text link
    Knowledge Graph (KG)-to-Text Generation has seen recent improvements in generating fluent and informative sentences which describe a given KG. As KGs are widespread across multiple domains and contain important entity-relation information, and as text simplification aims to reduce the complexity of a text while preserving the meaning of the original text, we propose KGSimple, a novel approach to unsupervised text simplification which infuses KG-established techniques in order to construct a simplified KG path and generate a concise text which preserves the original input's meaning. Through an iterative and sampling KG-first approach, our model is capable of simplifying text when starting from a KG by learning to keep important information while harnessing KG-to-text generation to output fluent and descriptive sentences. We evaluate various settings of the KGSimple model on currently-available KG-to-text datasets, demonstrating its effectiveness compared to unsupervised text simplification models which start with a given complex text. Our code is available on GitHub.Comment: Accepted as a Main Conference Long Paper at CIKM 202
    corecore