1,535 research outputs found

    Full-range Gate-controlled Terahertz Phase Modulations with Graphene Metasurfaces

    Full text link
    Local phase control of electromagnetic wave, the basis of a diverse set of applications such as hologram imaging, polarization and wave-front manipulation, is of fundamental importance in photonic research. However, the bulky, passive phase modulators currently available remain a hurdle for photonic integration. Here we demonstrate full-range active phase modulations in the Tera-Hertz (THz) regime, realized by gate-tuned ultra-thin reflective metasurfaces based on graphene. A one-port resonator model, backed by our full-wave simulations, reveals the underlying mechanism of our extreme phase modulations, and points to general strategies for the design of tunable photonic devices. As a particular example, we demonstrate a gate-tunable THz polarization modulator based on our graphene metasurface. Our findings pave the road towards exciting photonic applications based on active phase manipulations

    Band-edge-induced Bragg diffraction in two-dimensional photonic crystals

    Get PDF
    Two-dimensional photonic crystals composed of two orthogonal volume diffraction gratings have been photogenerated in photopolymers. When the read beam is set at the Bragg angle, the diffraction efficiency of the transmission grating is strongly enhanced at the band edge of the reflection grating recorded in the material. Such a device provides Bragg operation and enhancement of the diffraction efficiency of the thin diffraction grating together with good wavelength selectivity. Such advantages could be interesting for optical signal processing

    A brief analysis of spatial constitution and functional organization of museum architecture: A case study on museums in Hefei

    Get PDF
    AbstractCultural architecture, specially, museum architecture, is of significant social value and importance for the improvement of city image, and for the optimization of people's living environment. Consequently, it is significant to analyze such kind of architecture from various perspectives so as to explore its spatial constitution and functional organization. This paper generalizes and puts forward methodology to design interesting exhibition space, convenient traffic space and diversified rest space

    Field Distribution of Environment and Vibration Chamber

    Get PDF
    Environment and vibration test system can test equipment such as radars in full load condition. Environment and vibration chamber is an opening rectangular cavity. In order to study the field distribution of environment and vibration chamber, the open rectangular cavity field distribution and parabolic antenna are analyzed by using the Dyadic Green’s functions. According to the Dyadic Green’s functions, the field distribution of environment and vibration chamber is concluded by MATLAB. The simulation result of FEKO proves that the method by using Dyadic Green’s functions is available. The innovation of this article is using the Dyadic Green’s functions to analyzed open cavity field and parabolic antenna

    Validation and Application of SMAP SSS Observation in Chinese Coastal Seas

    Get PDF
    Using sea surface salinity (SSS) from the Soil Moisture Active Passive (SMAP) mission from September 2015 to August 2016, the spatial distribution and seasonal variation in SSS in the Chinese coastal seas were investigated. First, in situ salinity observation over Chinese East Sea was used to validate SMAP observation. Then, the SSS signature of the Yangtze River fresh water was analyzed using SMAP data and the river discharge data. The SSS around the Yangtze River estuary in the Chinese East Sea, the Bohai Sea and the Yellow Sea is significantly lower than that of the open ocean. The SSS of Chinese coastal seas shows significant seasonal variation, and the seasonal variation in the adjacent waters of the Yangtze River estuary is the most obvious, followed by that of the Pearl River estuary. The minimum value of SSS appears in summer while maximum in winter. The root-mean-squared difference of daily SSS between SMAP observation and in situ observation is around 3 psu in both summer and winter, which is much lower than the annual range of SSS variation. The path of fresh water from SMAP and in situ observation is consistent during summer time

    One-Pot Access to Diverse Functionalized Pyran Annulated Heterocyclic Systems Using SCMNPs@BPy-SO3H as a Novel Magnetic Nanocatalyst

    Get PDF
    The SCMNPs@BPy-SO3H catalyst was prepared and characterized using Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Vibrating Sample Magnetometry (VSM), Energy Dispersive X-ray Spectroscopy (EDX), X-ray Diffraction (XRD), and Scanning Electron Microscopy (SEM). Afterwards, its capability was efficiently used to promote the one-pot, three-component synthesis of pyrano[2,3-c]pyrazole and 2-amino-3-cyano-pyrano[3,2-c]chromen-5(4H)-one derivatives. The strategy resulted in the desired products with excellent yields and short reaction times. The SCMNPs@BPy-SO3H catalyst was readily recovered using a permanent magnetic field and it was reused in six runs with a slight decrease in catalytic activity. Copyright © 2020 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)
    • …
    corecore