4,873 research outputs found

    LHC Signatures of Two-Higgs-Doublets with Fourth Family

    Full text link
    On-going Higgs searches in the light mass window are of vital importance for testing the Higgs mechanism and probing new physics beyond the standard model (SM). The latest ATLAS and CMS searches for the SM Higgs boson at the LHC (7TeV) found some intriguing excesses of events in the \gamma\gamma/VV^* channels (V=Z,W) around the mass-range of 124-126 GeV. We explore a possible explanation of the \gamma\gamma and VV^* signals from the light CP-odd Higgs A^0 or CP-even Higgs h^0 from the general two-Higgs-doublet model with fourth-family fermions. We demonstrate that by including invisible decays of the Higgs boson A^0 or h^0 to fourth-family neutrinos, the predicted \gamma\gamma and VV^* signals can explain the observed new signatures at the LHC, and will be further probed by the forthcoming LHC runs in 2012.Comment: 22pp, 10 Figs, JHEP published version, references adde

    Probing Gravitational Dark Matter

    Full text link
    So far all evidences of dark matter (DM) come from astrophysical and cosmological observations, due to gravitational interactions of the DM. It is possible that the true DM particle in the universe joins gravitational interactions only, but nothing else. Such a Gravitational DM (GDM) acts as a weakly interacting massive particle (WIMP), which is conceptually simple and attractive. In this work, we explore this direction by constructing the simplest scalar GDM particle χs\chi_s. It is a Z2Z_2 odd singlet under the standard model (SM) gauge group, and naturally joins the unique dimension-4 interaction with Ricci curvature, ξsχs2R\xi_s \chi_s^2 R, where ξs\xi_s is the dimensionless nonminimal coupling. We demonstrate that this gravitational interaction ξsχs2R\xi_s \chi_s^2 R, together with Higgs-curvature nonminimal coupling term ξhH†HR\xi_h H^\dag H R, induces effective couplings between χs2\chi_s^2 and SM fields which can account for the observed DM thermal relic abundance. We analyze the annihilation cross sections of GDM particles and derive the viable parameter space for realizing the DM thermal relic density. We further study the direct/indirect detections and the collider signatures of such a scalar GDM. These turn out to be highly predictive and testable.Comment: 33pp, JCAP Final Version. Only minor rewordings, references adde

    Neutrino Dark Energy and Baryon Asymmetry from Higgs Sector

    Get PDF
    We propose a new model to explain the neutrino masses, the dark energy and the baryon asymmetry altogether. In this model, neutrinos naturally acquire small Majorana masses via type-II seesaw mechanism, while the pseudo-Nambu-Goldstone bosons associated with the neutrino mass-generation mechanism provide attractive candidates for dark energy. The baryon asymmetry of the universe is produced from the Higgs triplets decay with CP-violation.Comment: 5 pages, 2 figures. Version accepted by PL

    Asymptotically Safe Higgs Inflation

    Full text link
    We construct a new inflation model in which the standard model Higgs boson couples minimally to gravity and acts as the inflaton. Our construction of Higgs inflation incorporates the standard model with Einstein gravity which exhibits asymptotic safety in the ultraviolet region. The slow roll condition is satisfied at large field value due to the asymptotically safe behavior of Higgs self-coupling at high energies. We find that this minimal construction is highly predictive, and is consistent with both cosmological observations and collider experiments.Comment: 16pp, to match JCAP Final Version, only minor refinements, references adde

    Single-Valued Hamiltonian via Legendre-Fenchel Transformation and Time Translation Symmetry

    Get PDF
    Under conventional Legendre transformation, systems with a non-convex Lagrangian will result in a multi-valued Hamiltonian as a function of conjugate momentum. This causes problems such as non-unitary time evolution of quantum state and non-determined motion of classical particles, and is physically unacceptable. In this work, we propose a new construction of single-valued Hamiltonian by applying Legendre-Fenchel transformation, which is a mathematically rigorous generalization of conventional Legendre transformation, valid for non-convex Lagrangian systems, but not yet widely known to the physics community. With the new single-valued Hamiltonian, we study spontaneous breaking of time translation symmetry and derive its vacuum state. Applications to theories of cosmology and gravitation are discussed.Comment: Journal Version, 16pp. All results + conclusions un-changed, only minor refinements to clarify the importance of our new LFT method and its physics applications; references adde

    Spontaneous Spacetime Reduction and Unitary Weak Boson Scattering at the LHC

    Get PDF
    Theories of quantum gravity predict spacetime dimensions to become reduced at high energies, a striking phenomenon known as spontaneous dimensional reduction (SDR). We construct an effective electroweak theory based on the standard model (SM) and incorporate the TeV-scale SDR, which exhibits good high energy behavior and ensures the unitarity of weak gauge boson scattering. This also provides a natural solution to the hierarchy problem in the presence of scalar Higgs boson. We demonstrate that this model predicts unitary longitudinal weak boson scattering, and can be discriminated from the conventional 4d SM by the WW scattering experiments at the CERN LHC.Comment: Phys. Lett. B (in Press). arXiv admin note: text overlap with arXiv:1112.102

    Extending Higgs Inflation with TeV Scale New Physics

    Full text link
    Higgs inflation is among the most economical and predictive inflation models, although the original Higgs inflation requires tuning the Higgs or top mass away from its current experimental value by more than 2σ2\sigma deviations, and generally gives a negligible tensor-to-scalar ratio r∼10−3r \sim 10^{-3} (if away from the vicinity of critical point). In this work, we construct a minimal extension of Higgs inflation, by adding only two new weak-singlet particles at TeV scale, a vector-quark TT and a real scalar SS. The presence of singlets (T,S)(T, S) significantly impact the renormalization group running of the Higgs boson self-coupling. With this, our model provides a wider range of the tensor-to-scalar ratio r=O(0.1−10−3)r = O(0.1 - 10^{-3}), consistent with the favored rr values by either BICEP2 or Planck data, while keeping the successful prediction of the spectral index ns≃0.96 n_s \simeq 0.96 . It further allows the Higgs and top masses to fully fit the collider measurements. We also discuss implications for searching the predicted TeV-scale vector-quark TT and scalar SS at the LHC and future high energy pp colliders.Comment: 20pp, to match JCAP Final Versio
    • …
    corecore