468 research outputs found
Scalable gate architecture for densely packed semiconductor spin qubits
We demonstrate a 12 quantum dot device fabricated on an undoped Si/SiGe
heterostructure as a proof-of-concept for a scalable, linear gate architecture
for semiconductor quantum dots. The device consists of 9 quantum dots in a
linear array and 3 single quantum dot charge sensors. We show reproducible
single quantum dot charging and orbital energies, with standard deviations less
than 20% relative to the mean across the 9 dot array. The single quantum dot
charge sensors have a charge sensitivity of 8.2 x 10^{-4} e/root(Hz) and allow
the investigation of real-time charge dynamics. As a demonstration of the
versatility of this device, we use single-shot readout to measure a spin
relaxation time T1 = 170 ms at a magnetic field B = 1 T. By reconfiguring the
device, we form two capacitively coupled double quantum dots and extract a
mutual charging energy of 200 microeV, which indicates that 50 GHz two-qubit
gate operation speeds are feasible
A Reconfigurable Gate Architecture for Si/SiGe Quantum Dots
We demonstrate a reconfigurable quantum dot gate architecture that
incorporates two interchangeable transport channels. One channel is used to
form quantum dots and the other is used for charge sensing. The quantum dot
transport channel can support either a single or a double quantum dot. We
demonstrate few-electron occupation in a single quantum dot and extract
charging energies as large as 6.6 meV. Magnetospectroscopy is used to measure
valley splittings in the range of 35-70 microeV. By energizing two additional
gates we form a few-electron double quantum dot and demonstrate tunable tunnel
coupling at the (1,0) to (0,1) interdot charge transition.Comment: Related papers at http://pettagroup.princeton.ed
Investigation of Mobility Limiting Mechanisms in Undoped Si/SiGe Heterostructures
We perform detailed magnetotransport studies on two-dimensional electron
gases (2DEGs) formed in undoped Si/SiGe heterostructures in order to identify
the electron mobility limiting mechanisms in this increasingly important
materials system. By analyzing data from 26 wafers with different
heterostructure growth profiles we observe a strong correlation between the
background oxygen concentration in the Si quantum well and the maximum
mobility. The highest quality wafer supports a 2DEG with a mobility of 160,000
cm^2/Vs at a density 2.17 x 10^11/cm^2 and exhibits a metal-to-insulator
transition at a critical density 0.46 x 10^11/cm^2. We extract a valley
splitting of approximately 150 microeV at a magnetic field of 1.8 T. These
results provide evidence that undoped Si/SiGe heterostructures are suitable for
the fabrication of few-electron quantum dots.Comment: Related papers at http://pettagroup.princeton.ed
Recommended from our members
Quantifying the fuel use and greenhouse gas reduction potential of electric and hybrid electric vehicles.
No elliptic islands for the universal area-preserving map
A renormalization approach has been used in \cite{EKW1} and \cite{EKW2} to
prove the existence of a \textit{universal area-preserving map}, a map with
hyperbolic orbits of all binary periods. The existence of a horseshoe, with
positive Hausdorff dimension, in its domain was demonstrated in \cite{GJ1}. In
this paper the coexistence problem is studied, and a computer-aided proof is
given that no elliptic islands with period less than 20 exist in the domain. It
is also shown that less than 1.5% of the measure of the domain consists of
elliptic islands. This is proven by showing that the measure of initial
conditions that escape to infinity is at least 98.5% of the measure of the
domain, and we conjecture that the escaping set has full measure. This is
highly unexpected, since generically it is believed that for conservative
systems hyperbolicity and ellipticity coexist
XMM-Newton observations of 3C 273
A series of nine XMM-Newton observations of the radio-loud quasar 3C 273 are
presented, concentrating mainly on the soft excess. Although most of the
individual observations do not show evidence for iron emission, co-adding them
reveals a weak, broad line (EW ~ 56 eV). The soft excess component is found to
vary, confirming previous work, and can be well fitted with multiple blackbody
components, with temperatures ranging between ~40 and ~330 eV, together with a
power-law. Alternatively, a Comptonisation model also provides a good fit, with
a mean electron temperature of ~350 eV, although this value is higher when the
soft excess is more luminous over the 0.5-10 keV energy band. In the RGS
spectrum of 3C 273, a strong detection of the OVII He-alpha absorption line at
zero redshift is made; this may originate in warm gas in the local
intergalactic medium, consistent with the findings of both Fang et al. (2003)
and Rasmussen et al. (2003).Comment: 12 pages, 19 figures, accepted for publication in MNRA
- …