1,119 research outputs found
Barn Considerations for Cash Hay Operations
A well designed and built a barn can be invaluable for cash hay operation. Barn provide opportunity to reduce losses in dry matter and help maintain quality throughout the winter. There are numerous styles of barns that hay producers can purchase or build themselves. Wood frame structures, often with metal roofs and metal sides, are fairly common. You can also build barns with a steel structure with or without metal siding on the walls. Hoop barns are another common hay storage structure - particularly common with round bale storage. All, however, provide valuable storage for hay. There are four areas of consideration for ensuring the barn style chosen will be effective on a specific hay operation: site selection, barn sizing, construction approaches, and ventilation
Gypsy moths and American dog ticks: Space partners
An experiment intended for the space shuttle and designed to investigate the effects of weightlessness and total darkness on gypsy moth eggs and engorged American dog ticks is described. The objectives are: (1) to reevaluate the effects of zero gravity on the termination of diapause/hibernation of embryonated gypsy moth eggs, (2) to determine the effect of zero gravity on the ovipositions and subsequent hatch from engorged female American dog ticks that have been induced to diapause in the laboratory, and (3) to determine whether morphological or biochemical changes occur in the insects under examination. Results will be compared with those from a similar experiment conducted on Skylab 4
High-Spatial Resolution Laser Doppler Blood Flow Imaging
This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.A full-field laser Doppler blood flow imaging (LDI) system based on an FPGA (Field Programmable Gate Array) coupled with a high-speed CMOS (Complementary Metal-Oxide-Semiconductor) camera chip has been developed which provides blood flow images with flexible frame rates and spatial resolution. When a high spatial resolution is required, 1280x1024-pixel blood flow images were obtained by processing up to 2048 samples at 0.2 frames per second (fps). Alternatively, a maximum of 15.5fps was achieved by reducing the spatial resolution and sampling points to 256x256 pixels and 128 samples respectively. This system was applied to a high-spatial resolution flow imaging application in which a mixture of water and polystyrene microspheres was pumped through a micropipette (diameter = 250m) with controlled velocities, and the resulting flow was imaged and processed. The performance was demonstrated by the resulting flow images which are of size 1280×1024 pixels and obtained by processing 2048 samples at each pixel
Exoplanetary atmosphere target selection in the era of comparative planetology
The large number of new planets expected from wide-area transit surveys means
that follow-up transmission spectroscopy studies of their atmospheres will be
limited by the availability of telescope assets. We argue that telescopes
covering a broad range of apertures will be required, with even 1m-class
instruments providing a potentially important contribution. Survey strategies
that employ automated target selection will enable robust population studies.
As part of such a strategy, we propose a decision metric to pair the best
target to the most suitable telescope, and demonstrate its effectiveness even
when only primary transit observables are available. Transmission spectroscopy
target selection need not therefore be impeded by the bottle-neck of requiring
prior follow-up observations to determine the planet mass. The decision metric
can be easily deployed within a distributed heterogeneous network of telescopes
equipped to undertake either broadband photometry or spectroscopy. We show how
the metric can be used either to optimise the observing strategy for a given
telescope (e.g. choice of filter) or to enable the selection of the best
telescope to optimise the overall sample size. Our decision metric can also
provide the basis for a selection function to help evaluate the statistical
completeness of follow-up transmission spectroscopy datasets. Finally, we
validate our metric by comparing its ranked set of targets against lists of
planets that have had their atmospheres successfully probed, and against some
existing prioritised exoplanet lists.Comment: 20 pages, 16 figures, 3 tables. Revision 3, accepted by MNRAS.
Improvements include always using planetary masses where available and
reliable, treatment for sky backgrounds and out-of-transit noise and a use
case for defocused photometr
Characterization of Indoor Arenas through an Anonymous Survey
Equine farms are building both stables for the horses to live in and additional facilities to train and work horses (Kidd et al., 1997). For many of these farms, an outdoor arena that has an all-weather footing is the first working facility built. During inclement weather the ability to train in the outdoor arenas is inhibited, which in turn means the trainers, riders, and farms lose income as money is only made when horses are working, training, and competing. Indoor arenas allow for horses to continue to be worked no matter the weather conditions. The equine industry contributes a total of $122 billion dollars a year to the United States\u27 economy. The expenditures to build and maintain these arenas the horses utilize for training and work are a portion of the equine economic contribution (American Horse Council Foundation, 2018). During the summer of 2018, an anonymous online survey was conducted to begin to characterize indoor arenas. Owners, managers, and riders were questioned on a variety of topics including arena construction and design, arena usage, footing type, maintenance practices, environmental concerns, and potential health issues experienced within the facilities. Respondents in the study defined indoor arenas differently depending on geographic region, however most definitions included a roof, some enclosure, and footing in order to work the horses. In addition, of the 335 respondents of the survey, 71% or 239 respondents reported having concerns about the environment within the indoor arena. The three main concerns are dust, moisture, and lack of air movement. Overall, the survey begins to build our understanding regarding these facilities and provides the framework to continue research in the future
Evaluating a New Shade for Feedlot Cattle Performance and Heat Stress
Heat stress in cattle results in decreased feed intake, lower daily gain, and potentially death in susceptible animals under intense conditions. A study was carried out during the summer of 2013 at the USDA-ARS U.S. Meat Animal Research Center feedlot evaluating the impact of shade on environmental conditions and cattle performance. A novel two-tiered shade was used in half of the 14 pens, each holding 30 animals. The shades were designed to reduce solar heat load by 40% to 60% and to provide traveling shade across the pen, providing varied amounts of shade area as well as varied solar reduction potential. The objective of this study was to determine if the shade was effective at improving performance (evaluated as average daily gain, feed intake, and feed to gain ratio) and reducing environmental conditions that cause heat stress. A group of mixed-breed cattle with varied genetics including both and were selected, penned on the basis of sex, and blocked by color. Production parameters of pen feed usage were measured daily, and individual body weights were taken monthly. Environmental conditions including air temperature, relative humidity, wind speed, ground temperature, and black globe temperature with and without shade were measured. Solar load on the pens was reduced when shade was provided, with both ground temperature and black globe temperature showing reductions. Cattle showed nominally better performance; however, no significant differences were found in gain or feed intake. Panting scores were significantly lower with shade provided; slopes of cattle respiration rate versus ambient temperature were significantly lower with shade during the afternoon period
Validation of Reference Genes for Gene Expression Studies by RT-qPCR in HepaRG Cells during Toxicity Testing and Disease Modelling
Gene expression analysis by quantitative real-time polymerase chain reaction (RT-qPCR) is routinely used in biomedical studies. The reproducibility and reliability of the data fundamentally depends on experimental design and data interpretation. Despite the wide application of this assay, there is significant variation in the validation process of gene expression data from research laboratories. Since the validity of results depends on appropriate normalisation, it is crucial to select appropriate reference gene(s), where transcription of the selected gene is unaffected by experimental setting. In this study we have applied geNorm technology to investigate the transcription of 12 ‘housekeeping’ genes for use in the normalisation of RT-qPCR data acquired using a widely accepted HepaRG hepatic cell line in studies examining models of pre-clinical drug testing. geNorm data identified a number of genes unaffected by specific drug treatments and showed that different genes remained invariant in response to different drug treatments, whereas the transcription of ‘classical’ reference genes such as GAPDH (glyceralde- hyde-3-phosphate dehydrogenase) was altered by drug treatment. Comparing data normalised using the reference genes identified by geNorm with normalisation using classical housekeeping genes demonstrated substantial differences in the final results. In light of cell therapy application, RT-qPCR analyses has to be carefully evaluated to accurately interpret data obtained from dynamic cellular models undergoing sequential stages of phenotypic change
Application of Impedance-Based Techniques in Hepatology Research
There are a variety of end-point assays and techniques available to monitor hepatic cell cultures and study toxicity within in vitro models. These commonly focus on one aspect of cell metabolism and are often destructive to cells. Impedance-based cellular assays (IBCAs) assess biological functions of cell populations in real-time by measuring electrical impedance, which is the resistance to alternating current caused by the dielectric properties of proliferating of cells. While the uses of IBCA have been widely reported for a number of tissues, specific uses in the study of hepatic cell cultures have not been reported to date. IBCA monitors cellular behaviour throughout experimentation non-invasively without labelling or damage to cell cultures. The data extrapolated from IBCA can be correlated to biological events happening within the cell and therefore may inform drug toxicity studies or other applications within hepatic research. Because tight junctions comprise the blood/biliary barrier in hepatocytes, there are major consequences when these junctions are disrupted, as many pathologies centre around the bile canaliculi and flow of bile out of the liver. The application of IBCA in hepatology provides a unique opportunity to assess cellular polarity and patency of tight junctions, vital to maintaining normal hepatic function. Here, we describe how IBCAs have been applied to measuring the effect of viral infection, drug toxicity/IC50, cholangiopathies, cancer metastasis and monitoring of the gut-liver axis. We also highlight key areas of research where IBCAs could be used in future applications within the field of hepatology
Simultaneous temperature and humidity measurements in a mechanical ventilator using an optical fibre sensor
An optical fibre sensor for simultaneous temperature and humidity measurements consisting of one fibre Bragg grating (FBG) to measure temperature and a mesoporous film of bilayers of Poly(allylamine hydrochloride)(PAH) and silica (SiO2) nanoparticles deposited onto the tip of the same fibre to measure humidity is reported. The hygroscopic film was created using the layer-by-layer (LbL) method and the optical reflection spectra were measured up to a maximum of 23 bilayers. The temperature sensitivity of the FBG was 10 pm/°C while the sensitivity to humidity was (-1.4x10-12 W / %RH) using 23 bilayers. The developed sensor was tested in the mechanical ventilator and temperature and humidity of the delivered artificial air was simultaneously measured. Once calibrated, the optical fibre sensor has the potential to control the absolute humidity as an essential part of critical respiratory care. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only
Highly sensitive contact pressure measurements using FBG patch in endotracheal tube cuff
A method for measuring the contact pressure between an endotracheal tube cuff and the trachea was designed and developed by using a fibre Bragg grating (FBG) based optical fibre sensor. The FBG sensor is encased in an epoxy based UV-cured cuboid patch and transduces the transversely loaded pressure into an axial strain that induces wavelength shift of the Bragg reflection. The polymer patch was created by using a PTFE based mould and increases tensile strength and sensitivity of the bare fibre FBG to pressure to 2.10×10-2 nm/kPa. The characteristics of the FBG patch allow for continuous measurement of contact pressure. The measurement of contact pressure was demonstrated by the use of a 3D printed model of a human trachea. The influence of temperature on the measurements is reduced significantly by the use of a second FBG sensor patch that is not in contact with the trachea. Intracuff pressure measurements performed using a commercial manometer agreed well with the FBG contact pressure measurements. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only
- …