11,527 research outputs found
Recommended from our members
Developmental changes in the germinability, desiccation tolerance, hardseededness, and longevity of individual seeds of Trifolium ambiguum
Background and Aims: Using two parental clones of outcrossing Trifolium ambiguum as a potential model system, we examined how during seed development the maternal parent, number of seeds per pod, seed position within the pod, and pod position within the inflorescence influenced individual seed fresh weight, dry weight, water content, germinability, desiccation tolerance, hardseededness, and subsequent longevity of individual seeds.
Methods: Near simultaneous, manual reciprocal crosses were carried out between clonal lines for two experiments. Infructescences were harvested at intervals during seed development. Each individual seed was weighed and then used to determine dry weight or one of the physiological behaviour traits.
Key Results: Whilst population mass maturity was reached at 33â36 days after pollination (DAP), seed-to-seed variation in maximum seed dry weight, when it was achieved, and when maturation drying commenced, was considerable. Individual seeds acquired germinability between 14 and 44 DAP, desiccation tolerance between 30 and 40 DAP, and the capability to become hardseeded between 30 and 47 DAP. The time for viability to fall to 50 % (p50) at 60 % relative humidity and 45 °C increased between 36 and 56 DAP, when the seed coats of most individuals had become dark orange, but declined thereafter. Individual seed f. wt at harvest did not correlate with air-dry storage survival period. Analysing survival data for cohorts of seeds reduced the standard deviation of the normal distribution of seed deaths in time, but no sub-population showed complete uniformity of survival period.
Conclusions: Variation in individual seed behaviours within a developing population is inherent and inevitable. In this outbreeder, there is significant variation in seed longevity which appears dependent on embryo genotype with little effect of maternal genotype or architectural factors
Recommended from our members
Increases in the longevity of desiccation-phase developing rice seeds: response to high temperature drying depends on harvest moisture content
⢠Background and Aims Earlier studies have suggested that the drying conditions routinely used by genebanks may not be optimal for subsequent seed longevity. The aim of this study was to compare the effect of hot-air drying with low temperature drying on subsequent seed longevity for 20 diverse rice accessions and to consider how factors related to seed production history might influence the results.
⢠Methods Seeds were produced according to normal regeneration procedures at IRRI. They were harvested at different times (harvest date and days after anthesis (DAA), once for each accession) and dried either in a drying room (DR; 15% RH, 15°C), or in a flat-bed heated-air batch dryer (BD; 45°C, 8 h d-1) for up to 6 daily cycles followed by drying in the DR. Relative longevity was
assessed by storage at 10.9% moisture content (m.c.) and 45°C.
⢠Key Results Initial drying in the BD resulted in significantly greater longevity compared with the DR for 14 accessions (seed lots): the period of time for viability to fall to 50% for seeds dried in the BD as a percentage of that for seeds dried throughout in the DR varied between 1.3 and 372.2% for these 14 accessions. The seed lots that responded the most were harvested earlier in the season and at higher moisture content. Drying in the BD did not reduce subsequent longevity compared with DR drying for any of the remaining accessions.
⢠Conclusions Seeds harvested at a m.c. where, according to the moisture desorption isotherm, they could still be metabolically active (>16.2%), may be in the first stage of the post-mass maturity, desiccation phase of seed development and able to increase longevity in response to hot-air drying. The genebank standards regarding seed drying for rice and, perhaps, for other tropical species should be reconsidered
Germination performance of alien and native species could shape community assembly of temperate grasslands under different temperature scenarios
Rising temperatures due to climate change are expected to interplay with biological invasions, and may enhance the spread and growth of some alien species upon arrival in new areas. To successfully invade, a plant species needs to overcome multiple biological barriers. Among the crucial life stages, seed germination greatly contributes to the final species assembly of a plant community. Several studies have suggested that alien plant success is related to their high seed germination and longevity in the soil. Hence, our aim is to test if the germination potential of alien seeds present in the seed bank will be further enhanced by future warming in temperate dry grasslands, an ecosystem that is among those most prone to biological invasions. We designed a laboratory germination experiment at two temperatures (20 and 28 °C), to simulate an early or late heat wave in the growing season, using seeds from nine common grassland Asteraceae species, including native, archaeophyte and neophyte species. The test was performed on both single and mixed pools of these categories of species, using a full-factorial orthogonal design. The warmer germination temperature promoted neophyte success by increasing germination probability and germination speed, while negatively impacting these parameters in seeds of native species. The co-occurrence of native and archaeophyte seeds at the lower temperature limited the invasiveness of neophytes. These results provide important information on future management actions aimed at containing alien plant invasions, by improving our knowledge on the possible seed-bank response and interaction mechanisms of common species occurring in disturbed natural areas or restored sites. Graphical abstract: Summary of the experimental results. The colour of the flowers represent the status, divided as native (blue), neophyte (red) and archaeophyte (green). Each flower symbol represents the species pool for each plant category (i.e. NA = Buphthalmum salicifolium, Carlina vulgaris, Centaurea scabiosa; NE = Artemisia annua, Symphyotrichum novi-belgii, Senecio inaequidens; AR = Centaurea cyanus, Cichorium intybus, Tripleurospermum inodorum). The number of flowers represent the germination percentage of the various category assembly. In the columns are divided the various combination. From up to bottom the trend of germination percentage at 20 and 28 °C are shown. [Figure not available: see fulltext.]
Late Miocene to early Pliocene stratigraphic record in northern Taranaki Basin: Condensed sedimentation ahead of Northern Graben extension and progradation of the modern continental margin
The middle Pliocene-Pleistocene progradation of the Giant Foresets Formation in Taranaki Basin built up the modern continental margin offshore from western North Island. The late Miocene to early Pliocene interval preceding this progradation was characterised in northern Taranaki Basin by the accumulation of hemipelagic mudstone (Manganui Formation), volcaniclastic sediments (Mohakatino Formation), and marl (Ariki Formation), all at bathyal depths. The Manganui Formation has generally featureless wireline log signatures and moderate to low amplitude seismic reflection characteristics. Mohakatino Formation is characterised by a sharp decrease in the GR log value at its base, a blocky GR log motif reflecting sandstone packets, and erratic resistivity logs. Seismic profiles show bold laterally continuous reflectors. The Ariki Formation has a distinctive barrel-shaped to blocky GR log motif. This signature is mirrored by the SP log and often by an increase in resistivity values through this interval. The Ariki Formation comprises (calcareous) marl made up of abundant planktic foraminifera, is 109 m thick in Ariki-1, and accumulated over parts of the Western Stable Platform and beneath the fill of the Northern Graben. It indicates condensed sedimentation reflecting the distance of the northern region from the contemporary continental margin to the south
International capital mobility in an era of globalisation: adding a political dimension to the 'FeldsteinâHorioka Puzzle'
The debate about the scope of feasible policy-making in an era of globalisation continues to be set within the context of an assumption that national capital markets are now perfectly integrated at the international level. However, the empirical evidence on international capital mobility contradicts such an assumption. As a consequence, a significant puzzle remains. Why is it, in a world in which the observed pattern of capital flows is indicative of a far from globalised reality, that public policy continues to be constructed in line with more extreme variants of the globalisation hypothesis? I attempt to solve this puzzle by arguing that ideas about global capital market integration have an independent causal impact on political outcomes which extends beyond that which can be attributed to the extent of their actual integration
Testing the recovery of stellar rotation signals from Kepler light curves using a blind hare-and-hounds exercise
We present the results of a blind exercise to test the recoverability of
stellar rotation and differential rotation in Kepler light curves. The
simulated light curves lasted 1000 days and included activity cycles, Sun-like
butterfly patterns, differential rotation and spot evolution. The range of
rotation periods, activity levels and spot lifetime were chosen to be
representative of the Kepler data of solar like stars. Of the 1000 simulated
light curves, 770 were injected into actual quiescent Kepler light curves to
simulate Kepler noise. The test also included five 1000-day segments of the
Sun's total irradiance variations at different points in the Sun's activity
cycle.
Five teams took part in the blind exercise, plus two teams who participated
after the content of the light curves had been released. The methods used
included Lomb-Scargle periodograms and variants thereof, auto-correlation
function, and wavelet-based analyses, plus spot modelling to search for
differential rotation. The results show that the `overall' period is well
recovered for stars exhibiting low and moderate activity levels. Most teams
reported values within 10% of the true value in 70% of the cases. There was,
however, little correlation between the reported and simulated values of the
differential rotation shear, suggesting that differential rotation studies
based on full-disk light curves alone need to be treated with caution, at least
for solar-type stars.
The simulated light curves and associated parameters are available online for
the community to test their own methods.Comment: Accepted for publication in MNRAS. Accepted, 13 April 2015. Received,
26 March 2015; in original form, 9 November 201
Four-directional stereo-microscopy for 3D particle tracking with real-time error evaluation
High-speed video stereo-microscopy relies on illumination from two distinct angles to create two views of a sample from different directions. The 3D trajectory of a microscopic object can then be reconstructed using parallax to combine 2D measurements of its position in each image. In this work, we evaluate the accuracy of 3D particle tracking using this technique, by extending the number of views from two to four directions. This allows us to record two independent sets of measurements of the 3D coordinates of tracked objects, and comparison of these enables measurement and minimisation of the tracking error in all dimensions. We demonstrate the method by tracking the motion of an optically trapped microsphere of 5 Îźm in diameter, and find an accuracy of 2â5 nm laterally, and 5â10 nm axially, representing a relative error of less than 2.5% of its range of motion in each dimension
Weighing the Milky Way
We describe an experiment to measure the mass of the Milky Way galaxy. The
experiment is based on calculated light travel times along orthogonal
directions in the Schwarzschild metric of the Galactic center. We show that the
difference is proportional to the Galactic mass. We apply the result to light
travel times in a 10cm Michelson type interferometer located on Earth. The mass
of the Galactic center is shown to contribute 10^-6 to the flat space component
of the metric. An experiment is proposed to measure the effect.Comment: 10 pages, 1 figur
- âŚ