62 research outputs found
Value-Function Approximations for Partially Observable Markov Decision Processes
Partially observable Markov decision processes (POMDPs) provide an elegant
mathematical framework for modeling complex decision and planning problems in
stochastic domains in which states of the system are observable only
indirectly, via a set of imperfect or noisy observations. The modeling
advantage of POMDPs, however, comes at a price -- exact methods for solving
them are computationally very expensive and thus applicable in practice only to
very simple problems. We focus on efficient approximation (heuristic) methods
that attempt to alleviate the computational problem and trade off accuracy for
speed. We have two objectives here. First, we survey various approximation
methods, analyze their properties and relations and provide some new insights
into their differences. Second, we present a number of new approximation
methods and novel refinements of existing techniques. The theoretical results
are supported by experiments on a problem from the agent navigation domain
Solving Factored MDPs with Hybrid State and Action Variables
Efficient representations and solutions for large decision problems with
continuous and discrete variables are among the most important challenges faced
by the designers of automated decision support systems. In this paper, we
describe a novel hybrid factored Markov decision process (MDP) model that
allows for a compact representation of these problems, and a new hybrid
approximate linear programming (HALP) framework that permits their efficient
solutions. The central idea of HALP is to approximate the optimal value
function by a linear combination of basis functions and optimize its weights by
linear programming. We analyze both theoretical and computational aspects of
this approach, and demonstrate its scale-up potential on several hybrid
optimization problems
Multivariate time series classification with temporal abstractions
The increase in the number of complex temporal datasets collected today has prompted the development of methods that extend classical machine learning and data mining methods to time-series data. This work focuses on methods for multivariate time-series classification. Time series classification is a challenging problem mostly because the number of temporal features that describe the data and are potentially useful for classification is enormous. We study and develop a temporal abstraction framework for generating multivariate time series features suitable for classification tasks. We propose the STF-Mine algorithm that automatically mines discriminative temporal abstraction patterns from the time series data and uses them to learn a classification model. Our experimental evaluations, carried out on both synthetic and real world medical data, demonstrate the benefit of our approach in learning accurate classifiers for time-series datasets. Copyright © 2009, Assocation for the Advancement of ArtdicaI Intelligence (www.aaai.org). All rights reserved
Identification of Microbial and Proteomic Biomarkers in Early Childhood Caries
The purpose of this study was to provide a univariate and multivariate analysis of genomic microbial data and salivary mass-spectrometry proteomic profiles for dental caries outcomes. In order to determine potential useful biomarkers for dental caries, a multivariate classification analysis was employed to build predictive models capable of classifying microbial and salivary sample profiles with generalization performance. We used high-throughput methodologies including multiplexed microbial arrays and SELDI-TOF-MS profiling to characterize the oral flora and salivary proteome in 204 children aged 1–8 years (n = 118 caries-free, n = 86 caries-active). The population received little dental care and was deemed at high risk for childhood caries. Findings of the study indicate that models incorporating both microbial and proteomic data are superior to models of only microbial or salivary data alone. Comparison of results for the combined and independent data suggests that the combination of proteomic and microbial sources is beneficial for the classification accuracy and that combined data lead to improved predictive models for caries-active and caries-free patients. The best predictive model had a 6% test error, >92% sensitivity, and >95% specificity. These findings suggest that further characterization of the oral microflora and the salivary proteome associated with health and caries may provide clinically useful biomarkers to better predict future caries experience
Nonnegative principal component analysis for mass spectral serum profiles and biomarker discovery
<p>Abstract</p> <p>Background</p> <p>As a novel cancer diagnostic paradigm, mass spectroscopic serum proteomic pattern diagnostics was reported superior to the conventional serologic cancer biomarkers. However, its clinical use is not fully validated yet. An important factor to prevent this young technology to become a mainstream cancer diagnostic paradigm is that robustly identifying cancer molecular patterns from high-dimensional protein expression data is still a challenge in machine learning and oncology research. As a well-established dimension reduction technique, PCA is widely integrated in pattern recognition analysis to discover cancer molecular patterns. However, its global feature selection mechanism prevents it from capturing local features. This may lead to difficulty in achieving high-performance proteomic pattern discovery, because only features interpreting global data behavior are used to train a learning machine.</p> <p>Methods</p> <p>In this study, we develop a nonnegative principal component analysis algorithm and present a nonnegative principal component analysis based support vector machine algorithm with sparse coding to conduct a high-performance proteomic pattern classification. Moreover, we also propose a nonnegative principal component analysis based filter-wrapper biomarker capturing algorithm for mass spectral serum profiles.</p> <p>Results</p> <p>We demonstrate the superiority of the proposed algorithm by comparison with six peer algorithms on four benchmark datasets. Moreover, we illustrate that nonnegative principal component analysis can be effectively used to capture meaningful biomarkers.</p> <p>Conclusion</p> <p>Our analysis suggests that nonnegative principal component analysis effectively conduct local feature selection for mass spectral profiles and contribute to improving sensitivities and specificities in the following classification, and meaningful biomarker discovery.</p
Comparative effectiveness research on patients with acute ischemic stroke using Markov decision processes
Using Rewards for Belief State Updates in Partially Observable Markov Decision Processes
- …