149 research outputs found
Diversity of Salmonella enterica serovar Derby isolated from pig, pork and humans in Germany
Salmonella enterica serovar Derby (S. Derby) is one of the most prevalent serovars in pigs in Europe and in the U.S. and ranks among the 10 most frequently isolated serovars in humans. Therefore, a set of 82 epidemiologically unrelated S. Derby strains isolated between 2006 and 2008 from pigs, pork and humans in Germany was selected and investigated in respect to the transmission of clonal groups of the serovar along the food chain. Various phenotypic and genotypic methods were applied and the pathogenicity and resistance gene repertoire was determined. Phenotypically 72% of the strains were susceptible to all 17 antimicrobials tested while the others were monoresistant to tetracycline or multi-resistant with different resistance profiles. Four major clonal groups were identified based on PFGE, sequence data of the virulence genes sopA, sopB and sopD, VNTR-locus STTR5 and MLST revealing also the new sequence type ST774. Thirty different PFGE profiles were detected resulting in four clusters representing the four groups. The pathogenicity gene repertoire of 32 representative S. Derby strains analyzed by microarray showed six types with differences in the Salmonella pathogenicity islands, pathogenicity genes on smaller islets or prophages and fimbriae coding genes. The pathogenicity gene repertoire of the predominant types PAT DE1 and DE2 were most similar to the ones of S. Paratyphi B (dT+, O5−) and to a minor degree to S. Infantis and S. Virchow PATs. Overall this study showed that in Germany currently one major S. Derby clone is frequently isolated from pigs and humans. Contaminated pork was identified as one vehicle and consequently is a risk for human health. To prevent this serovar from entering the food chain, control measurements should be applied at the farm level
G protein-coupled receptor (GPCR) pharmacogenomics
The field of pharmacogenetics, the investigation of the influence of one or more sequence variants on drug response phenotypes, is a special case of pharmacogenomics, a discipline that takes a genome-wide approach. Massively parallel, next generation sequencing (NGS), has allowed pharmacogenetics to be subsumed by pharmacogenomics with respect to the identification of variants associated with responders and non-responders, optimal drug response, and adverse drug reactions. A plethora of rare and common naturally-occurring GPCR variants must be considered in the context of signals from across the genome. Many fundamentals of pharmacogenetics were established for G protein-coupled receptor (GPCR) genes because they are primary targets for a large number of therapeutic drugs. Functional studies, demonstrating likely-pathogenic and pathogenic GPCR variants, have been integral to establishing models used for in silico analysis. Variants in GPCR genes include both coding and non-coding single nucleotide variants and insertion or deletions (indels) that affect cell surface expression (trafficking, dimerization, and desensitization/downregulation), ligand binding and G protein coupling, and variants that result in alternate splicing encoding isoforms/variable expression. As the breadth of data on the GPCR genome increases, we may expect an increase in the use of drug labels that note variants that significantly impact the clinical use of GPCR-targeting agents. We discuss the implications of GPCR pharmacogenomic data derived from the genomes available from individuals who have been well-phenotyped for receptor structure and function and receptor-ligand interactions, and the potential benefits to patients of optimized drug selection. Examples discussed include the renin-angiotensin system in SARS-CoV-2 (COVID-19) infection, the probable role of chemokine receptors in the cytokine storm, and potential protease activating receptor (PAR) interventions. Resources dedicated to GPCRs, including publicly available computational tools, are also discussed.</p
Clinical aspects of Mayer-Rokitansky-Kuester-Hauser syndrome: recommendations for clinical diagnosis and staging
BACKGROUND: The Mayer-Rokitansky-Kuester-Hauser (MRKH) syndrome is a malformation of the female genitals (occurring in one in 4000 female live births) as a result of interrupted embryonic development of the Müllerian (paramesonephric) ducts. This retrospective study examined the issue of associated malformations, subtyping, and the frequency distribution of subtypes in MRKH syndrome. METHODS: Fifty-three MRKH patients were investigated using a newly developed standardized questionnaire. Together with the results of clinical and diagnostic examinations, the patients were classified into the three recognized subtypes [typical, atypical and MURCS (Müllerian duct aplasia, renal aplasia, and cervicothoracic somite dysplasia)]. RESULTS: The typical form was diagnosed in 25 patients (47%), the atypical form in 11 patients (21%), and the most marked form—the MURCS type—in 17 patients (32%). Associated malformations were notably frequent among the patients. Malformations of the renal system were the most frequent type of accompanying malformation, with 23 different malformations in 19 patients, followed by 18 different skeletal changes in 15 patients. CONCLUSIONS: In accordance with the literature, this study shows that associated malformations are present in more than a third of cases. Therefore, new basic guidelines for standard diagnostic classification involving patients with suspected MRKH are presente
Modified risk-stratified sequential treatment (subcutaneous rituximab with or without chemotherapy) in B-cell Post-transplant lymphoproliferative disorder (PTLD) after Solid organ transplantation (SOT): the prospective multicentre phase II PTLD-2 trial
The prospective multicentre Phase II PTLD-2 trial (NCT02042391) tested modified risk-stratification in adult SOT recipients with CD20-positive PTLD based on principles established in the PTLD-1 trials: sequential treatment and risk-stratification. After rituximab monotherapy induction, patients in complete remission as well as those in partial remission with IPI < 3 at diagnosis (low-risk) continued with rituximab monotherapy and thus chemotherapy free. Most others (high-risk) received R-CHOP-21. Thoracic SOT recipients who progressed (very-high-risk) received alternating R-CHOP-21 and modified R-DHAOx. The primary endpoint was event-free survival (EFS) in the low-risk group. The PTLD-1 trials provided historical controls. Rituximab was applied subcutaneously. Of 60 patients enrolled, 21 were low-risk, 28 high-risk and 9 very-high-risk. Overall response was 45/48 (94%, 95% CI 83-98). 2-year Kaplan-Meier estimates of time to progression and overall survival were 78% (95% CI 65-90) and 68% (95% CI 55-80) - similar to the PTLD-1 trials. Treatment-related mortality was 4/59 (7%, 95% CI 2-17). In the low-risk group, 2-year EFS was 66% (95% CI 45-86) versus 52% in the historical comparator that received CHOP (p = 0.432). 2-year OS in the low-risk group was 100%. Results with R-CHOP-21 in high-risk patients confirmed previous results. Immunochemotherapy intensification in very-high-risk patients was disappointing
The ATLAS experiment software on ARM
With an increased dataset obtained during the Run 3 of the LHC at CERN and the even larger expected increase of the dataset by more than one order of magnitude for the HL-LHC, the ATLAS experiment is reaching the limits of the current data processing model in terms of traditional CPU resources based on x86_64 architectures and an extensive program for software upgrades towards the HL-LHC has been set up. The ARM architecture is becoming a competitive and energy efficient alternative. Some surveys indicate its increased presence in HPCs and commercial clouds, and some WLCG sites have expressed their interest. Chip makers are also developing their next generation solutions on ARM architectures, sometimes combining ARM and GPU processors in the same chip. Consequently it is important that the ATLAS software embraces the change and is able to successfully exploit this architecture. We report on the successful porting to ARM of the Athena software framework, which is used by ATLAS for both online and offline computing operations. Furthermore we report on the successful validation of simulation workflows running on ARM resources. For this we have set up an ATLAS Grid site using ARM compatible middleware and containers on Amazon Web Services (AWS) ARM resources. The ARM version of Athena is fully integrated in the regular software build system and distributed in the same way as other software releases. In addition, the workflows have been integrated into the HEPscore benchmark suite which is the planned WLCG wide replacement of the HepSpec06 benchmark used for Grid site pledges. In the overall porting process we have used resources on AWS, Google Cloud Platform (GCP) and CERN. A performance comparison of different architectures and resources will be discussed
Recurrent atypical teratoid/rhabdoid tumors (AT/RT) reveal discrete features of progression on histology, epigenetics, copy number profiling, and transcriptomics
Atypical teratoid/rhabdoid tumors (AT/RT) are the most common malignant brain tumors manifesting in infancy. They split into four molecular types. The major three (AT/RT-SHH, AT/RT-TYR, and AT/RT-MYC) all carry mutations in SMARCB1, the fourth quantitatively smaller type is characterized by SMARCA4 mutations (AT/RT-SMARCA4). Molecular characteristics of disease recurrence or metastatic spread, which go along with a particularly dismal outcome, are currently unclear. Here, we investigated tumor tissue from 26 patients affected by AT/RT to identify signatures of recurrences in comparison with matched primary tumor samples. Microscopically, AT/RT recurrences demonstrated a loss of architecture and significantly enhanced mitotic activity as compared to their related primary tumors. Based on DNA methylation profiling, primary tumor and related recurrence were grossly similar, but three out of 26 tumors belonged to a different molecular type or subtype after second surgery compared to related primary lesions. Copy number variations (CNVs) differed in six cases, showing novel gains on chromosome 1q or losses of chromosome 10 in recurrences as the most frequent alterations. To consolidate these observations, our cohort was combined with a data set of unmatched primary and recurrent AT/RT, which demonstrated chromosome 1q gain and 10 loss in 18% (n = 7) and 11% (n = 4) of the recurrences (n = 38) as compared to 7% (n = 3) and 0% (n = 0) in the primary tumors (n = 44), respectively. Similar to the observations made by DNA methylation profiling, RNA sequencing of our cohort revealed AT/RT primary tumors and matched recurrences clustering closely together. However, a number of genes showed significantly altered expression in AT/RT-SHH recurrences. Many of them are known tumor driving growth factors, involved in embryonal development and tumorigenesis, or are cell-cycle-associated. Overall, our work identifies subtle molecular changes that occur in the course of the disease and that may help define novel therapeutic targets for AT/RT recurrences
ATRT–SHH comprises three molecular subgroups with characteristic clinical and histopathological features and prognostic significance
Atypical teratoid/rhabdoid tumor (ATRT) is an aggressive central nervous system tumor characterized by loss of SMARCB1/INI1 protein expression and comprises three distinct molecular groups, ATRT–TYR, ATRT–MYC and ATRT–SHH. ATRT–SHH represents the largest molecular group and is heterogeneous with regard to age, tumor location and epigenetic profile. We, therefore, aimed to investigate if heterogeneity within ATRT–SHH might also have biological and clinical importance. Consensus clustering of DNA methylation profiles and confirmatory t-SNE analysis of 65 ATRT–SHH yielded three robust molecular subgroups, i.e., SHH-1A, SHH-1B and SHH-2. These subgroups differed by median age of onset (SHH-1A: 18 months, SHH-1B: 107 months, SHH-2: 13 months) and tumor location (SHH-1A: 88% supratentorial; SHH-1B: 85% supratentorial; SHH-2: 93% infratentorial, often extending to the pineal region). Subgroups showed comparable SMARCB1 mutational profiles, but pathogenic/likely pathogenic SMARCB1 germline variants were over-represented in SHH-2 (63%) as compared to SHH-1A (20%) and SHH-1B (0%). Protein expression of proneural marker ASCL1 (enriched in SHH-1B) and glial markers OLIG2 and GFAP (absent in SHH-2) as well as global mRNA expression patterns differed, but all subgroups were characterized by overexpression of SHH as well as Notch pathway members. In a Drosophila model, knockdown of Snr1 (the fly homologue of SMARCB1) in hedgehog activated cells not only altered hedgehog signaling, but also caused aberrant Notch signaling and formation of tumor-like structures. Finally, on survival analysis, molecular subgroup and age of onset (but not ASCL1 staining status) were independently associated with overall survival, older patients (> 3 years) harboring SHH-1B experiencing relatively favorable outcome. In conclusion, ATRT–SHH comprises three subgroups characterized by SHH and Notch pathway activation, but divergent molecular and clinical features. Our data suggest that molecular subgrouping of ATRT–SHH has prognostic relevance and might aid to stratify patients within future clinical trials. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00401-022-02424-5
An Investigation into the Cognition Behind Spontaneous String Pulling in New Caledonian Crows
The ability of some bird species to pull up meat hung on a string is a famous example of spontaneous animal problem solving. The “insight” hypothesis claims that this complex behaviour is based on cognitive abilities such as mental scenario building and imagination. An operant conditioning account, in contrast, would claim that this spontaneity is due to each action in string pulling being reinforced by the meat moving closer and remaining closer to the bird on the perch. We presented experienced and naïve New Caledonian crows with a novel, visually restricted string-pulling problem that reduced the quality of visual feedback during string pulling. Experienced crows solved this problem with reduced efficiency and increased errors compared to their performance in standard string pulling. Naïve crows either failed or solved the problem by trial and error learning. However, when visual feedback was available via a mirror mounted next to the apparatus, two naïve crows were able to perform at the same level as the experienced group. Our results raise the possibility that spontaneous string pulling in New Caledonian crows may not be based on insight but on operant conditioning mediated by a perceptual-motor feedback cycle
Infants and newborns with Atypical Teratoid Rhabdoid Tumors (ATRT) and Extracranial Malignant Rhabdoid Tumors (eMRT) in the EU-RHAB registry: a unique and challenging population
SIMPLE SUMMARY: Malignant rhabdoid tumors (MRT) are deadly tumors that predominantly affect infants and young children. Even when considering the generally young age of these patients, the treatment of infants below the age of six months represents a particular challenge due to the vulnerability of this patient population. The aim of our retrospective study was to assess the available information on prognostic factors, genetics, toxicity of treatment and long-term outcomes of MRT. We confirmed that, in a cohort of homogenously treated infants with MRT, significant predictors of outcome were female sex, localized stage, absence of a GLM and maintenance therapy, and these significantly favorably influence prognosis. Stratification-based biomarker-driven tailored trials may be a key option to improve survival rates. ABSTRACT: Introduction: Malignant rhabdoid tumors (MRT) predominantly affect infants and young children. Patients below six months of age represent a particularly therapeutically challenging group. Toxicity to developing organ sites limits intensity of treatment. Information on prognostic factors, genetics, toxicity of treatment and long-term outcomes is sparse. Methods: Clinical, genetic, and treatment data of 100 patients (aged below 6 months at diagnosis) from 13 European countries were analyzed (2005–2020). Tumors and matching blood samples were examined for SMARCB1 mutations using FISH, MLPA and Sanger sequencing. DNA methylation subgroups (ATRT-TYR, ATRT-SHH, and ATRT-MYC) were determined using 450 k / 850 k-profiling. Results: A total of 45 patients presented with ATRT, 29 with extracranial, extrarenal (eMRT) and 9 with renal rhabdoid tumors (RTK). Seventeen patients demonstrated synchronous tumors (SYN). Metastases (M+) were present in 27% (26/97) at diagnosis. A germline mutation (GLM) was detected in 55% (47/86). DNA methylation subgrouping was available in 50% (31 / 62) with ATRT or SYN; for eMRT, methylation-based subgrouping was not performed. The 5-year overall (OS) and event free survival (EFS) rates were 23.5 ± 4.6% and 19 ± 4.1%, respectively. Male sex (11 ± 5% vs. 35.8 ± 7.4%), M+ stage (6.1 ± 5.4% vs. 36.2 ± 7.4%), presence of SYN (7.1 ± 6.9% vs. 26.6 ± 5.3%) and GLM (7.7 ± 4.2% vs. 45.7 ± 8.6%) were significant prognostic factors for 5-year OS. Molecular subgrouping and survival analyses confirm a previously described survival advantage for ATRT-TYR. In an adjusted multivariate model, clinical factors that favorably influence the prognosis were female sex, localized stage, absence of a GLM and maintenance therapy. Conclusions: In this cohort of homogenously treated infants with MRT, significant predictors of outcome were sex, M-stage, GLM and maintenance therapy. We confirm the need to stratify which patient groups benefit from multimodal treatment, and which need novel therapeutic strategies. Biomarker-driven tailored trials may be a key option
Infants and Newborns with Atypical Teratoid Rhabdoid Tumors (ATRT) and Extracranial Malignant Rhabdoid Tumors (eMRT) in the EU-RHAB Registry: A Unique and Challenging Population
Malignant rhabdoid tumors (MRT) predominantly affect infants and young
children. Patients below six months of age represent a particularly therapeutically challenging group.
Toxicity to developing organ sites limits intensity of treatment. Information on prognostic factors,
genetics, toxicity of treatment and long-term outcomes is sparse. Methods: Clinical, genetic, and
treatment data of 100 patients (aged below 6 months at diagnosis) from 13 European countries were
analyzed (2005–2020). Tumors and matching blood samples were examined for SMARCB1 mutations
using FISH, MLPA and Sanger sequencing. DNA methylation subgroups (ATRT-TYR, ATRT-SHH,
and ATRT-MYC) were determined using 450 k / 850 k-profiling. Results: A total of 45 patients
presented with ATRT, 29 with extracranial, extrarenal (eMRT) and 9 with renal rhabdoid tumors (RTK).
Seventeen patients demonstrated synchronous tumors (SYN). Metastases (M+) were present in 27%
(26/97) at diagnosis. A germline mutation (GLM) was detected in 55% (47/86). DNA methylation
subgrouping was available in 50% (31 / 62) with ATRT or SYN; for eMRT, methylation-based
subgrouping was not performed. The 5-year overall (OS) and event free survival (EFS) rates were
23.5 ± 4.6% and 19 ± 4.1%, respectively. Male sex (11 ± 5% vs. 35.8 ± 7.4%), M+ stage (6.1 ± 5.4%
vs. 36.2 ± 7.4%), presence of SYN (7.1 ± 6.9% vs. 26.6 ± 5.3%) and GLM (7.7 ± 4.2% vs. 45.7 ± 8.6%)
were significant prognostic factors for 5-year OS. Molecular subgrouping and survival analyses
confirm a previously described survival advantage for ATRT-TYR. In an adjusted multivariate model,
clinical factors that favorably influence the prognosis were female sex, localized stage, absence of
a GLM and maintenance therapy. Conclusions: In this cohort of homogenously treated infants
with MRT, significant predictors of outcome were sex, M-stage, GLM and maintenance therapy. We confirm the need to stratify which patient groups benefit from multimodal treatment, and which
need novel therapeutic strategies. Biomarker-driven tailored trials may be a key option
- …