184 research outputs found
DecideNet: Counting Varying Density Crowds Through Attention Guided Detection and Density Estimation
In real-world crowd counting applications, the crowd densities vary greatly
in spatial and temporal domains. A detection based counting method will
estimate crowds accurately in low density scenes, while its reliability in
congested areas is downgraded. A regression based approach, on the other hand,
captures the general density information in crowded regions. Without knowing
the location of each person, it tends to overestimate the count in low density
areas. Thus, exclusively using either one of them is not sufficient to handle
all kinds of scenes with varying densities. To address this issue, a novel
end-to-end crowd counting framework, named DecideNet (DEteCtIon and Density
Estimation Network) is proposed. It can adaptively decide the appropriate
counting mode for different locations on the image based on its real density
conditions. DecideNet starts with estimating the crowd density by generating
detection and regression based density maps separately. To capture inevitable
variation in densities, it incorporates an attention module, meant to
adaptively assess the reliability of the two types of estimations. The final
crowd counts are obtained with the guidance of the attention module to adopt
suitable estimations from the two kinds of density maps. Experimental results
show that our method achieves state-of-the-art performance on three challenging
crowd counting datasets.Comment: CVPR 201
Hidden Two-Stream Convolutional Networks for Action Recognition
Analyzing videos of human actions involves understanding the temporal
relationships among video frames. State-of-the-art action recognition
approaches rely on traditional optical flow estimation methods to pre-compute
motion information for CNNs. Such a two-stage approach is computationally
expensive, storage demanding, and not end-to-end trainable. In this paper, we
present a novel CNN architecture that implicitly captures motion information
between adjacent frames. We name our approach hidden two-stream CNNs because it
only takes raw video frames as input and directly predicts action classes
without explicitly computing optical flow. Our end-to-end approach is 10x
faster than its two-stage baseline. Experimental results on four challenging
action recognition datasets: UCF101, HMDB51, THUMOS14 and ActivityNet v1.2 show
that our approach significantly outperforms the previous best real-time
approaches.Comment: Accepted at ACCV 2018, camera ready. Code available at
https://github.com/bryanyzhu/Hidden-Two-Strea
Beyond Gaussian Pyramid: Multi-skip Feature Stacking for Action Recognition
Most state-of-the-art action feature extractors involve differential
operators, which act as highpass filters and tend to attenuate low frequency
action information. This attenuation introduces bias to the resulting features
and generates ill-conditioned feature matrices. The Gaussian Pyramid has been
used as a feature enhancing technique that encodes scale-invariant
characteristics into the feature space in an attempt to deal with this
attenuation. However, at the core of the Gaussian Pyramid is a convolutional
smoothing operation, which makes it incapable of generating new features at
coarse scales. In order to address this problem, we propose a novel feature
enhancing technique called Multi-skIp Feature Stacking (MIFS), which stacks
features extracted using a family of differential filters parameterized with
multiple time skips and encodes shift-invariance into the frequency space. MIFS
compensates for information lost from using differential operators by
recapturing information at coarse scales. This recaptured information allows us
to match actions at different speeds and ranges of motion. We prove that MIFS
enhances the learnability of differential-based features exponentially. The
resulting feature matrices from MIFS have much smaller conditional numbers and
variances than those from conventional methods. Experimental results show
significantly improved performance on challenging action recognition and event
detection tasks. Specifically, our method exceeds the state-of-the-arts on
Hollywood2, UCF101 and UCF50 datasets and is comparable to state-of-the-arts on
HMDB51 and Olympics Sports datasets. MIFS can also be used as a speedup
strategy for feature extraction with minimal or no accuracy cost
- …