15 research outputs found
SUPERNOVA DRIVING. III. SYNTHETIC MOLECULAR CLOUD OBSERVATIONS
We present a comparison of molecular clouds (MCs) from a simulation of supernova (SN) driven interstellar medium (ISM) turbulence with real MCs from the Outer Galaxy Survey. The radiative transfer calculations to compute synthetic CO spectra are carried out assuming that the CO relative abundance depends only on gas density, according to four different models. Synthetic MCs are selected above a threshold brightness temperature value, T-B,T-min = 1.4 K, of the J = 1 - 0 (CO)-C-12 line, generating 16 synthetic catalogs (four different spatial resolutions and four CO abundance models), each containing up to several thousands MCs. The comparison with the observations focuses on the mass and size distributions and on the velocity-size and mass-size Larson relations. The mass and size distributions are found to be consistent with the observations, with no significant variations with spatial resolution or chemical model, except in the case of the unrealistic model with constant CO abundance. The velocity-size relation is slightly too steep for some of the models, while the mass-size relation is a bit too shallow for all models only at a spatial resolution dx approximate to 1 pc. The normalizations of the Larson relations show a clear dependence on spatial resolution, for both the synthetic and the real MCs. The comparison of the velocity-size normalization suggests that the SN rate in the Perseus arm is approximately 70% or less of the rate adopted in the simulation. Overall, the realistic properties of the synthetic clouds confirm that SN-driven turbulence can explain the origin and dynamics of MCs.Peer reviewe
The Origin of Massive Stars : The Inertial-inflow Model
We address the problem of the origin of massive stars, namely the origin, path, and timescale of the mass flows that create them. Based on extensive numerical simulations, we propose a scenario where massive stars are assembled by large-scale, converging, inertial flows that naturally occur in supersonic turbulence. We refer to this scenario of massive-star formation as the inertial-inflow model. This model stems directly from the idea that the mass distribution of stars is primarily the result of turbulent fragmentation. Under this hypothesis, the statistical properties of turbulence determine the formation timescale and mass of prestellar cores, posing definite constraints on the formation mechanism of massive stars. We quantify such constraints by analyzing a simulation of supernova-driven turbulence in a 250 pc region of the interstellar medium, describing the formation of hundreds of massive stars over a time of approximately 30 Myr. Due to the large size of our statistical sample, we can say with full confidence that massive stars in general do not form from the collapse of massive cores nor from competitive accretion, as both models are incompatible with the numerical results. We also compute synthetic continuum observables in the Herschel and ALMA bands. We find that, depending on the distance of the observed regions, estimates of core mass based on commonly used methods may exceed the actual core masses by up to two orders of magnitude and that there is essentially no correlation between estimated and real core masses.Peer reviewe
Physical properties and real nature of massive clumps in the galaxy
Systematic surveys of massive clumps have been carried out to study the conditions leading to the formation of massive stars. These clumps are typically at large distances and unresolved, so their physical properties cannot be reliably derived from the observations alone. Numerical simulations are needed to interpret the observations. To this end, we generate synthetic Herschel observations using our large-scale star-formation simulation, where massive stars explode as supernovae driving the interstellar-medium turbulence. From the synthetic observations, we compile a catalogue of compact sources following the exact same procedure as for the Hi-GAL compact source catalogue. We show that the sources from the simulation have observational properties with statistical distributions consistent with the observations. By relating the compact sources from the synthetic observations to their 3D counterparts in the simulation, we find that the synthetic observations overestimate the clump masses by about an order of magnitude on average due to line-of-sight projection, and projection effects are likely to be even worse for Hi-GAL Inner Galaxy sources. We also find that a large fraction of sources classified as protostellar are likely to be starless, and propose a new method to partially discriminate between true and false protostellar sources.Peer reviewe
Supernova driving. I. The origin of molecular cloud turbulence
Turbulence is ubiquitous in molecular clouds (MCs), but its origin is still unclear because MCs are usually assumed to live longer than the turbulence dissipation time. Interstellar medium (ISM) turbulence is likely driven by supernova (SN) explosions, but it has never been demonstrated that SN explosions can establish and maintain a turbulent cascade inside MCs consistent with the observations. In this work, we carry out a simulation of SN-driven turbulence in a volume of (250 pc)(3), specifically designed to test if SN driving alone can be responsible for the observed turbulence inside MCs. We find that SN driving establishes a velocity scaling consistent with the usual scaling laws of supersonic turbulence, suggesting that previous idealized simulations of MC turbulence, driven with a random, large-scale volume force, were correctly adopted as appropriate models for MC turbulence, despite the artificial driving. We also find that the same scaling laws extend to the interiors of MCs, and that the velocity-size relation of the MCs selected from our simulation is consistent with that of MCs from the Outer-Galaxy Survey, the largest MC sample available. The mass-size relation and the mass and size probability distributions also compare successfully with those of the Outer Galaxy Survey. Finally, we show that MC turbulence is super-Alfvenic with respect to both the mean and rms magnetic-field strength. We conclude that MC structure and dynamics are the natural result of SN-driven turbulence
Supernova driving. II. Compressive ratio in molecular-clou turbulence
The compressibility of molecular cloud (MC) turbulence plays a crucial role in star formation models, because it controls the amplitude and distribution of density fluctuations. The relation between the compressive ratio (the ratio of powers in compressive and solenoidal motions) and the statistics of turbulence has been previously studied systematically only in idealized simulations with random external forces. In this work, we analyze a simulation of large-scale turbulence (250 pc) driven by supernova (SN) explosions that has been shown to yield realistic MC properties. We demonstrate that SN driving results in MC turbulence with a broad lognormal distribution of the compressive ratio, with a mean value approximate to 0.3, lower than the equilibrium value of approximate to 0.5 found in the inertial range of isothermal simulations with random solenoidal driving. We also find that the compressibility of the turbulence is not noticeably affected by gravity, nor are the mean cloud radial (expansion or contraction) and solid-body rotation velocities. Furthermore, the clouds follow a general relation between the rms density and the rms Mach number similar to that of supersonic isothermal turbulence, though with a large scatter, and their average gas density probability density function is described well by a lognormal distribution, with the addition of a high-density power-law tail when self-gravity is included
Explaining the luminosity spread in young clusters:proto and pre-main sequence stellar evolution in a molecular cloud environment
Hertzsprung-Russell diagrams of star forming regions show a large luminosity
spread. This is incompatible with well-defined isochrones based on classic
non-accreting protostellar evo- lution models. Protostars do not evolve in
isolation of their environment, but grow through accretion of gas. In addition,
while an age can be defined for a star forming region, the ages of individual
stars in the region will vary. We show how the combined effect of a
protostellar age spread, a consequence of sustained star formation in the
molecular cloud, and time-varying protostellar accretion for individual
protostars can explain the observed luminosity spread. We use a global MHD
simulation including a sub-scale sink particle model of a star forming region
to follow the accretion process of each star. The accretion profiles are used
to compute stellar evolution models for each star, incorporating a model of how
the accretion energy is distributed to the disk, radiated away at the accretion
shock, or incorporated into the outer layers of the protostar. Using a modelled
cluster age of 5 Myr we naturally reproduce the lumi- nosity spread and find
good agreement with observations of the Collinder 69 cluster, and the Orion
Nebular Cluster. It is shown how stars in binary and multiple systems can be
externally forced creating recurrent episodic accretion events. We find that in
a realistic global molecular cloud model massive stars build up mass over
relatively long time-scales. This leads to an important conceptual change
compared to the classic picture of non-accreting stellar evolution segmented in
to low-mass Hayashi tracks and high-mass Henyey tracks.Comment: 20 pages, 16 figures, Updated to match published article in MNRA
Supernova driving. III. Synthetic molecular cloud observations
We present a comparison of molecular clouds (MCs) from a simulation of supernova (SN) driven interstellar medium (ISM) turbulence with real MCs from the Outer Galaxy Survey. The radiative transfer calculations to compute synthetic CO spectra are carried out assuming that the CO relative abundance depends only on gas density, according to four different models. Synthetic MCs are selected above a threshold brightness temperature value, T-B,T-min = 1.4 K, of the J = 1 - 0 (CO)-C-12 line, generating 16 synthetic catalogs (four different spatial resolutions and four CO abundance models), each containing up to several thousands MCs. The comparison with the observations focuses on the mass and size distributions and on the velocity-size and mass-size Larson relations. The mass and size distributions are found to be consistent with the observations, with no significant variations with spatial resolution or chemical model, except in the case of the unrealistic model with constant CO abundance. The velocity-size relation is slightly too steep for some of the models, while the mass-size relation is a bit too shallow for all models only at a spatial resolution dx approximate to 1 pc. The normalizations of the Larson relations show a clear dependence on spatial resolution, for both the synthetic and the real MCs. The comparison of the velocity-size normalization suggests that the SN rate in the Perseus arm is approximately 70% or less of the rate adopted in the simulation. Overall, the realistic properties of the synthetic clouds confirm that SN-driven turbulence can explain the origin and dynamics of MCs