777 research outputs found

    Workload Equity in Vehicle Routing Problems: A Survey and Analysis

    Full text link
    Over the past two decades, equity aspects have been considered in a growing number of models and methods for vehicle routing problems (VRPs). Equity concerns most often relate to fairly allocating workloads and to balancing the utilization of resources, and many practical applications have been reported in the literature. However, there has been only limited discussion about how workload equity should be modeled in VRPs, and various measures for optimizing such objectives have been proposed and implemented without a critical evaluation of their respective merits and consequences. This article addresses this gap with an analysis of classical and alternative equity functions for biobjective VRP models. In our survey, we review and categorize the existing literature on equitable VRPs. In the analysis, we identify a set of axiomatic properties that an ideal equity measure should satisfy, collect six common measures, and point out important connections between their properties and those of the resulting Pareto-optimal solutions. To gauge the extent of these implications, we also conduct a numerical study on small biobjective VRP instances solvable to optimality. Our study reveals two undesirable consequences when optimizing equity with nonmonotonic functions: Pareto-optimal solutions can consist of non-TSP-optimal tours, and even if all tours are TSP optimal, Pareto-optimal solutions can be workload inconsistent, i.e. composed of tours whose workloads are all equal to or longer than those of other Pareto-optimal solutions. We show that the extent of these phenomena should not be underestimated. The results of our biobjective analysis are valid also for weighted sum, constraint-based, or single-objective models. Based on this analysis, we conclude that monotonic equity functions are more appropriate for certain types of VRP models, and suggest promising avenues for further research.Comment: Accepted Manuscrip

    A large neighbourhood based heuristic for two-echelon routing problems

    Full text link
    In this paper, we address two optimisation problems arising in the context of city logistics and two-level transportation systems. The two-echelon vehicle routing problem and the two-echelon location routing problem seek to produce vehicle itineraries to deliver goods to customers, with transits through intermediate facilities. To efficiently solve these problems, we propose a hybrid metaheuristic which combines enumerative local searches with destroy-and-repair principles, as well as some tailored operators to optimise the selections of intermediate facilities. We conduct extensive computational experiments to investigate the contribution of these operators to the search performance, and measure the performance of the method on both problem classes. The proposed algorithm finds the current best known solutions, or better ones, for 95% of the two-echelon vehicle routing problem benchmark instances. Overall, for both problems, it achieves high-quality solutions within short computing times. Finally, for future reference, we resolve inconsistencies between different versions of benchmark instances, document their differences, and provide them all online in a unified format

    Models and Algorithms for the Integrated Planning of Bin Allocation and Vehicle Routing in Solid Waste Management

    Get PDF
    The efficient organization of waste collection systems based on bins located along the streets involves the solution of several tactical optimization problems. In particular, the bin configuration and sizing at each collection site as well as the service frequency over a given planning horizon have to be decided. In this context, a higher service frequency leads to higher routing costs, but at the same time less or smaller bins are required, which leads to lower bin allocation investment costs. The bins used have different types and different costs and there is a limit on the space at each collection site as well as a limit on the total number of bins of each type that can be used. In this paper we consider the problem of designing a collection system consisting of the combination of a vehicle routing and a bin allocation problem in which the trade-off between the associated costs has to be considered. The solution approach combines an effective variable neighborhood search metaheuristic for the routing part with a mixed integer linear programming-based exact method for the solution of the bin allocation part. We propose hierarchical solution procedures where the two decision problems are solved in sequence, as well as an integrated approach where the two problems are considered simultaneously. Extensive computational testing on synthetic and real-world instances with hundreds of collection sites shows the benefit of the integrated approaches with respect to the hierarchical ones

    The Electric Fleet Size and Mix Vehicle Routing Problem with Time Windows and Recharging Stations

    Get PDF
    International audienceDue to new regulations and further technological progress in the field of electric vehicles, the research community faces the new challenge of incorporating the electric energy based restrictions into vehicle routing problems. One of these restrictions is the limited battery capacity which makes detours to recharging stations necessary, thus requiring efficient tour planning mechanisms in order to sustain the competitiveness of electric vehicles compared to conventional vehicles. We introduce the Electric Fleet Size and Mix Vehicle Routing Problem with Time Windows and recharging stations (E-FSMFTW) to model decisions to be made with regards to fleet composition and the actual vehicle routes including the choice of recharging times and locations. The available vehicle types differ in their transport capacity, battery size and acquisition cost. Furthermore, we consider time windows at customer locations, which is a common and important constraint in real-world routing and planning problems. We solve this problem by means of branch-and-price as well as proposing a hybrid heuristic, which combines an Adaptive Large Neighbourhood Search with an embedded local search and labelling procedure for intensification. By solving a newly created set of benchmark instances for the E-FSMFTW and the existing single vehicle type benchmark using an exact method as well, we show the effectiveness of the proposed approach
    • …