4,387 research outputs found

    Uniformly high-order accurate non-oscillatory schemes, 1

    Get PDF
    The construction and the analysis of nonoscillatory shock capturing methods for the approximation of hyperbolic conservation laws was begun. These schemes share many desirable properties with total variation diminishing schemes (TVD), but TVD schemes have at most first order accuracy, in the sense of truncation error, at extreme of the solution. A uniformly second order approximation was constucted, which is nonoscillatory in the sense that the number of extrema of the discrete solution is not increasing in time. This is achieved via a nonoscillatory piecewise linear reconstruction of the solution from its cell averages, time evolution through an approximate solution of the resulting initial value problem, and averaging of this approximate solution over each cell

    Some physical implications of recent solar wind measurements

    Get PDF
    The physical implications of the existence at about 1 AU of a quiet solar wind particle flux about 90 percent larger than that suggested in the past is investigated within the framework of the two-fluid solar wind model equations. During the spherically symmetric radial expansion of the quiet solar wind, the particle flux is conserved quantity. It is found that a pure collisional two-fluid model provides good particle density and streaming velocity at 1 AU, but predicts too large an electron temperature and too small a proton temperature. When noncollisional contributions to the transport coefficients are incorporated in the model equations, a complete satisfactory agreement with the available observations is obtained. Upper limits to the effective coupling between electrons and protons, as well as to the effective proton thermal conductivity, and both upper and lower limits to the effective electron thermal conductivity in the quiet solar wind, required to provide agreement with observations, are given

    Optimal clustering of frequency-constrained maintenance jobs with shared set-ups

    Get PDF
    Since maintenance jobs often require one or more set-up activities, joint execution or clustering of maintenance jobs is a powerful instrument to reduce shut-down costs. We consider a clustering problem for frequency-constrained maintenance jobs, i.e. maintenance jobs that must be carried out with a prescribed (or higher) frequency. For the clustering of maintenance jobs with identical, so-called common set-ups, several strong dominance rules are provided. These dominance rules are used in an efficient dynamic programming algorithm which solves the problem in polynomial time. For the clustering of maintenance jobs with partially identical, so-called shared set-ups, similar but less strong dominance rules are available. Nevertheless, a surprisingly well-performing greedy heuristic and a branch and bound procedure have been developed to solve this problem. For randomly generated test problems with 10 set-ups and 30 maintenance jobs, the heuristic was optimal in 47 out of 100 test problems, with an average deviation of 0.24% from the optimal solution. In addition, the branch and bound method found an optimal solution in only a few seconds computation time on average

    Multi-Dimensional ENO Schemes for General Geometries

    Get PDF
    A class of ENO schemes is presented for the numerical solution of multidimensional hyperbolic systems of conservation laws in structured and unstructured grids. This is a class of shock-capturing schemes which are designed to compute cell-averages to high order accuracy. The ENO scheme is composed of a piecewise-polynomial reconstruction of the solution form its given cell-averages, approximate evolution of the resulting initial value problem, and averaging of this approximate solution over each cell. The reconstruction algorithm is based on an adaptive selection of stencil for each cell so as to avoid spurious oscillations near discontinuities while achieving high order of accuracy away from them

    Model based decision support for planning of road maintenance

    Get PDF
    In this article we describe a Decision Support Model, based on Operational Research methods, for the multi-period planning of maintenance of bituminous pavements. This model is a tool for the road manager to assist in generating an optimal maintenance plan for a road. Optimal means: minimising the Net Present Value of maintenance costs, while the plan is acceptable in terms of technical admissibility, resulting quality, etc. Global restrictions such as budget restrictions can also be imposed.\ud \ud Adequate grouping of maintenance activities in view of quantity discounts is an important aspect of our model. Our approach is to reduce the complexity of the optimisation by hierarchical structuring in four levels. In the lowest two levels maintenance per lane sector is considered, first with an unbounded planning horizon and next with a bounded planning horizon and time-windows for maintenance. The grouping of maintenance activities for a specific road is the topic of the third level. At the fourth level, which we will not consider in this article, the problem of optimal assignment of the available maintenance budgets over a set of roads or road sections takes place. Here, some results are presented to demonstrate the effects of grouping and to show that this hierarchical approach gives rise to improvements compared with previous work
    • …
    corecore